机器学习_第二篇 分类算法(4)_集成学习【bagging(袋装法)】

2024-03-07 23:20

本文主要是介绍机器学习_第二篇 分类算法(4)_集成学习【bagging(袋装法)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Bagging(bootstrap aggregating)采用的是随机有放回的选择训练数据构造分类器,最后组合。(一种根据均匀概率分布从数据中重复抽样(有放回)的技术)

随机森林是bagging中的一种方法。以随机森林为例进行说明

随机森林是构造很多颗决策树,形成一个森林,然后用这些决策树共同决策输出类别是什么。

随机森林算法是在构建单一决策树的基础上进行的,同时它也是对单一决策树算法的延伸和改进。

在整个随机森林算法的过程中,有两个随机过程:a. 输入数据—>随机从整体训练数据集中选取一部分作为一颗决策树的构建,而且是有放回的选取。 b. 特征选取—>每棵决策树所需的特征是从整体的特征集中随机选取的。

(这两个随机过程使得随机森林很大程度上避免了过拟合现象的出现)

A、随机森林算法具体实现过程:

  1. 从训练数据中选取n个数据作为训练数据的输入,一般情况下n是远远小于整体的训练数据N,这样就会造成有一部分数据是无法被去到的,这部分数据被称为袋外数据,可以使用袋外数据做误差分析。
  2. 选取输入的训练数据后,构建决策树(方法:每一个分裂节点从整体的特征集M中选取m个特征构建,一般情况下m远小于M,通常是log2或者sqrt的数量),从这m个属性中根据某种策略(如gini减少或信息增益等)确定分裂属性。
  3. 重复b步骤,直到不能分裂或达到我们设定的阈值(如叶子结点树或的树的深度),此时建立了一个决策树
  4. 重复上面的a,b,c步骤,直到达到预定树的颗数为止。

 

随机森林算法的注意点:

1、 在构建决策树的过程中是不需要剪枝的。 
2、 整个森林的树的数量和每棵树的特征需要人为进行设定。 
3、 构建决策树的时候分裂节点的选择是依据最小基尼系数的。

随机森林有很多的优点:

a. 在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合。

b. 在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力。

c. 它能够处理很高维度(feature很多)的数据,并且不用做特征选择,对数据集的适应能力强:既能处理离散型数据,也能处理连续型数据,数据集无需规范化。

d. 在创建随机森林的时候,对generlization error使用的是无偏估计。

e. 训练速度快,可以得到变量重要性排序。

f. 在训练过程中,能够检测到feature间的互相影响。

g 容易做成并行化方法。

h. 实现比较简单。

 

这篇关于机器学习_第二篇 分类算法(4)_集成学习【bagging(袋装法)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785169

相关文章

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

SpringBoot集成图片验证码框架easy-captcha的详细过程

《SpringBoot集成图片验证码框架easy-captcha的详细过程》本文介绍了如何将Easy-Captcha框架集成到SpringBoot项目中,实现图片验证码功能,Easy-Captcha是... 目录SpringBoot集成图片验证码框架easy-captcha一、引言二、依赖三、代码1. Ea

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

JAVA集成本地部署的DeepSeek的图文教程

《JAVA集成本地部署的DeepSeek的图文教程》本文主要介绍了JAVA集成本地部署的DeepSeek的图文教程,包含配置环境变量及下载DeepSeek-R1模型并启动,具有一定的参考价值,感兴趣的... 目录一、下载部署DeepSeek1.下载ollama2.下载DeepSeek-R1模型并启动 二、J

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Qt 中集成mqtt协议的使用方法

《Qt中集成mqtt协议的使用方法》文章介绍了如何在工程中引入qmqtt库,并通过声明一个单例类来暴露订阅到的主题数据,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一,引入qmqtt 库二,使用一,引入qmqtt 库我是将整个头文件/源文件都添加到了工程中进行编译,这样 跨平台