FPGA使用XADC测量外部模拟输入电压

2024-03-07 19:20

本文主要是介绍FPGA使用XADC测量外部模拟输入电压,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、XADC简介

1.1、特性

Xilinx系列的FPGA中都包含了一个内置的XADC,我们可以通过这个XADC进行一些精度不高的外部模拟信号采样以及FPGA片内传感器信号采集。XADC的分辨率为12位,采样率为1MSPS。

1.2、结构框图

  • 两片XADC,ADC A可用于片内传感器采集(温度、参考电源电压),也可用于外部模拟信号采集。ADC B只能用于外部模拟信号采集。
  • 1个专用模拟输入通道和16个复用模拟输入通道
  • 基准源可选:内部基准源和外部基准源
  • 对外接口DRP可通过JTAG或者FPGA内部逻辑进行控制
图1.1 XADC内部结构框图

1.3、XADC接口介绍

  • 初始化接口:
图1.2 XADC初始化接口图
信号名方向功能描述
di_in[15:0]inputDRP的输入数据总线。
daddr_in[6:0]inputDRP的地址总线。
den_ininputDPR的使能信号
dwe_ininputDRP的写使能信号
drdy_outoutputDRP的数据准备好信号
do_out[15:0]outputDRP的输出数据总线
dclk_ininputDRP的输入时钟
reset_ininputXADC的复位信号,高电平有效
vp_in/ vn_ininput专用模拟输入通道,可设计为差分模拟信号输入,当设计使用XADC功能但不用VP/VN时,应该将这两个引脚接地
VAUXP[15:0]/VAUXN[15:0]input16个复用的模拟输入通道,可设计为差分模拟信号输入
ot_outoutput过温报警输出信号
channel_out[4:0]input通道选择输出信号。当前ADC转换的输入MUX通道选择,由该接口输出提供给用户查看。
eoc_outoutputADC转换完成信号。当测量值被写入状态寄存器时,该信号在ADC完成转换之后拉高
eos_outoutput时序结束信号。自动通道序列中,当最后一个通道的数据被写入状态寄存器时,该信号转为高电平。
busy_outoutputADC忙信号。该信号在ADC转换时为一直为高电平。

寄存器接口:
XADC一共有128个寄存器,前64个(00H ~ 3FH)为只读寄存器,后64个(40H~7FH)为可读写的控制寄存器。一般我们用前32个只读寄存器比较多。

1.3 XADC寄存器接口图

ADC通道选择寄存器:
可以看到ADC模拟通道选择的值与对应通道存放数据的状态寄存器的地址相同。

二、硬件电路

2.1、基准电源

XADC的所需要的基本外围电路如图所示。XADC的基准源可使用外步基准源来实现,基准源的电压为1.25V;也可以选择使用内部基准源,外围电路直接将VREFP和VREFN接地即可。

图2.1 基准电源外围电路

2.2、模拟输入通道

XADC模拟信号输入方式有单极性和双极性两种。XADC默认的方式为单极性输入,fpga片上所有传感器的工作模式为单极性输入。

  • 单极性输入: 当使用单极性输入时,输入电压范围为0V ~ 1V,对应ADC编码范围为000h~FFFh,量化分辨率为1V / 212=244uV。
图2.2 单极性输入电压量化图

在单极性输入模式,Vp必须为正,Vn连接到模拟地或者共模信号。Vn连接到共模信号时,该信号电压范围应该为0V0.5V(即Vp与Vn的共模电压范围),由于Vp与Vn的差模电压范围为0V1V,所以在单极性输入模式下,Vp的输入电压最高可达1.5V。

图2.3 单极性输入电压范围图
  • 双极性输入: 当使用双极性输入时,差分输入电压范围为-0.5V ~ +0.5V,XADC编码采用补码格式,对应编码范围为800h ~ FFFh、000h ~ 7FFh。量化分辨率为1V/212=244uV。
图2.4 双极性输入电压量化图
在双极性输入模式,Vp-Vn差分模拟输入电压的范围±0.5V,Vn的共模电压应该不超过0.5V。
图2.5 双极性输入电压范围图

2.3、外部模拟输入电路

模拟通道输入为高输入,数据手册上推荐电路由分压电路和滤波电路组成,通过分压和滤波之后输入到XADC的模拟信号电压值应该不超过1V。

图2.6 外部模拟输入电路图

图2.6中 R1与R2为分压电阻,R5用于与R1与R2的并联电阻匹配。R3、R4与C1构成抗混叠滤波器,建立时间计算参考手册ug480。

在这里插入图片描述

三、时序图

3.1、连续采样模式的时序图

主要有电压采集和电压转换两个阶段。

图3.1 连续采样模式的时序图

DRP时序图

主要用于XADC寄存器的数据读写。

  • 当DEN为高电平时,信号DADDR[6:0]和信号DWE在DCLK的上升沿才会捕捉到,逻辑设计中通常将DEN仅维持一个DCLK时钟的高电平。
  • 当捕捉DWE为低电平时,表示读操作;捕捉DWE为高电平时,表示写操作。
  • 读操作时,DRDY拉高 表示DRP寄存器的数据已经放在总线DO[15:0]上了,用户可以直接读取;写操作时,DRDY拉高表示写的数据已经成功写入DRP寄存器里。
  • 在DRDY拉低之前,一个新的读写操作是不能进行的。
图3.2 DRP时序图

四、XADC的使用教程

4.1、目的

在ZYQN的pl端使用XADC,完成共6路模拟输入信号的电压采样。其中模拟输入通道包括1个Vp/Vn模拟输入通道和5个复用模拟输入通道VAUXP/VAUXN。

4.2、IP核设置

  • Basic界面
  1. 选择DRP接口,读写时序比较简单。
  2. continuous mode 意味着按照设定 ADC 采样率进行采样,event mode 意味着自行控制 ADC 采样率,但是不可超过设定的最大 ADC 采样率;通道选择为 channel sequencer,即多通道采样时按照指定的通道顺序进行扫描采样,通道号定义参考上文通道选择。
  3. 通道序列
  4. 时钟设置
  • ADC Setup界面
    1.序列器模式选择 continuous 模式,会一直循环采样,通道平均次数可按实际情况来,实际采样率=ADC 设定采样率/平均次数。
    2.采样数据平均次数。
  • Alarms界面
    若不是用检测警告功能,该界面可以全部取消勾选。

  • Channel Sequencer界面
    选择需要初始化的通道即可。这里使用的模拟通道为Vp/Vn、vauxp0/vauxn0、vauxp2/vauxn2、vauxp3/vauxn3、vauxp10/vauxn10、vauxp11/vauxn11。

  • Summary界面

4.3、逻辑设计

  • top.v ------顶层文件
`timescale 1ns / 1ps
///
// Create Date: 2023/07/18 16:36:43module top(//时钟input pl_clk,   //模拟输入input vp_in,input vn_in,input vauxp0,input vauxn0,input vauxp2,input vauxn2,input vauxp3,input vauxn3,input vauxp10,input vauxn10,input vauxp11,input vauxn11);wire den_in;
wire dwe_in;
wire drdy_out;              //数据有效输出
wire [15:0] di_in, do_out;  //数据输入 数据输出
wire [6:0] daddr_in;        //寄存器地址
wire [4:0] channel_out;     // 通道选择输出
wire eoc_out;               // 转换完成信号
wire eos_out;               // 时序结束信号
wire alarm_out;
wire busy_out;
wire rst_n;
//模拟通道读取的ADC值
wire [11:0] vpvnData;
wire [11:0] vaux0Data, vaux2Data,vaux3Data,vaux10Data,vaux11Data;//XADC IP例化
xadc_wiz_0 inst_xadc_wiz_0 (.dclk_in(pl_clk),           // input wire dclk_in.di_in(di_in),              // input wire [15 : 0] di_in.daddr_in(daddr_in),        // input wire [6 : 0] daddr_in.den_in(den_in),            // input wire den_in.dwe_in(0),                 // input wire dwe_in     仅用到读操作,故一直设置为零.drdy_out(drdy_out),        // output wire drdy_out.do_out(do_out),            // output wire [15 : 0] do_out.reset_in(0),               // input wire reset_in  不用复位功能.vp_in(vp_in),              // input wire vp_in.vn_in(vn_in),              // input wire vn_in.vauxp0(vauxp0),            // input wire vauxp0.vauxn0(vauxn0),            // input wire vauxn0.vauxp2(vauxp2),            // input wire vauxp2.vauxn2(vauxn2),            // input wire vauxn2.vauxp3(vauxp3),            // input wire vauxp3.vauxn3(vauxn3),            // input wire vauxn3.vauxp10(vauxp10),          // input wire vauxp10.vauxn10(vauxn10),          // input wire vauxn10.vauxp11(vauxp11),          // input wire vauxp11.vauxn11(vauxn11),          // input wire vauxn11.channel_out(channel_out),  // output wire [4 : 0] channel_out.eoc_out(eoc_out),          // output wire eoc_out.alarm_out(alarm_out),      // output wire alarm_out.eos_out(eos_out),          // output wire eos_out.busy_out(busy_out)         // output wire busy_out
);    //对DRP接口操作,完成XADC寄存器数据的读取  
xadc_capture inst_xadc_capture(.dclk(pl_clk),.rst_n(1),                  //不用复位功能.di_in(di_in),.daddr_in(daddr_in),.den_in(den_in),.dwe_in(dwe_in),.drdy_out(drdy_out),.eoc_out(eoc_out),.do_out(do_out),.channel_out(channel_out),.xadc_vpvn_data(vpvnData),.xadc_vaux0_data(vaux0Data),.xadc_vaux2_data(vaux2Data),.xadc_vaux3_data(vaux3Data),.xadc_vaux10_data(vaux10Data),.xadc_vaux11_data(vaux11Data));endmodule
  • xadc_capture.v ------XADC的寄存器数据读取操作
`timescale 1ns / 1ps
///
// Create Date: 2023/07/18 16:36:13module xadc_capture(input           dclk, input           rst_n, //XADC IP 接口 output reg[15:0]di_in,          // 写入xadc总线上的数据output reg[6:0] daddr_in,       // 读取xadc寄存器地址output reg      den_in,         // 控制使能output reg      dwe_in,         // 写使能input           drdy_out,       // 数据有效输出input           eoc_out,input   [15:0]  do_out,         // 读取xadc总线上的数据input   [4:0]   channel_out,    // 通道选择输出//内部逻辑接口 output reg[11:0] xadc_vpvn_data,    //XADC 读出的 Vp/Vn 采样数据 output reg[11:0] xadc_vaux0_data,   //XADC 读出的 vaux0 采样数据    output reg[11:0] xadc_vaux2_data,   //XADC 读出的 vaux2 采样数据output reg[11:0] xadc_vaux3_data,   //XADC 读出的 vaux3 采样数据output reg[11:0] xadc_vaux10_data,  //XADC 读出的 vaux10 采样数据output reg[11:0] xadc_vaux11_data   //XADC 读出的 vaux11 采样数据);///
//产生 XADC 读时序  
always @(posedge dclk or negedge rst_n) beginif(!rst_n) begin den_in <= 1'b0; dwe_in <= 1'b0;        daddr_in <= 7'd0;di_in <= 7'd0;endelse if(eoc_out) begindaddr_in <= {2'b00, channel_out}; //XADC 数据读取寄存器地址 直接连接到通道选择输出channel_out[4:0]den_in <= 1'b1;                   //产生den_in一个时钟周期的高电平     endelse begindaddr_in <= 7'd0;den_in <= 1'b0;endend  ///  
//读 XADC 输出数据   
always @(posedge dclk or negedge rst_n) beginif(!rst_n) begin xadc_vpvn_data  <= 0;xadc_vaux0_data <= 0;       xadc_vaux2_data <= 0;xadc_vaux3_data <= 0;xadc_vaux10_data <= 0;xadc_vaux11_data <= 0;end   else if(drdy_out) begincase(channel_out[4:0])5'h03: beginxadc_vpvn_data <= do_out[15:4];               end5'h10: beginxadc_vaux0_data <= do_out[15:4];               end5'h12: beginxadc_vaux2_data <= do_out[15:4];               end5'h13: beginxadc_vaux3_data <= do_out[15:4];               end5'h1a: beginxadc_vaux10_data <= do_out[15:4];               end5'h1b: beginxadc_vaux11_data <= do_out[15:4];               enddefault: beginendendcaseendendendmodule
  • xadc.xdc ------约束文件
#时钟物理约束
set_property PACKAGE_PIN AD20 [get_ports pl_clk]
set_property IOSTANDARD LVCMOS33 [get_ports pl_clk]#时钟周期约束
create_clock -name clk -period 10 [get_ports pl_clk ]

提示: 当使用复用模拟通道时(VAUXP[15:0]和VAUXN[15:0]),在fpga逻辑设计中不需要对相应的引脚进行约束,只用在顶层模块中调用IP例化模块,并连接到顶层的信号输入即可,这样该引脚就可以作为模拟输入通道。在约束文件中仅对时钟进行了约束。

  • 为方便大家下载官方参考文档,已将这两个文档上传 供大家免费下载。至此,希望能够帮助路过的你。若文章对大家有帮助,也希望能够赏个赞,你们的点赞是我写文章的动力(比心)。欢迎交流学习~

参考文档

  • ug480_7Series_XADC;

  • XADC Wizard v3.3;

  • 百度网盘连接:
    https://pan.baidu.com/s/1GgqPdtemoABWpRRT-owCpQ
    提取码:216p

这篇关于FPGA使用XADC测量外部模拟输入电压的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/784553

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

usaco 1.2 Transformations(模拟)

我的做法就是一个一个情况枚举出来 注意计算公式: ( 变换后的矩阵记为C) 顺时针旋转90°:C[i] [j]=A[n-j-1] [i] (旋转180°和270° 可以多转几个九十度来推) 对称:C[i] [n-j-1]=A[i] [j] 代码有点长 。。。 /*ID: who jayLANG: C++TASK: transform*/#include<

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在