论文分享(3)----DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations

本文主要是介绍论文分享(3)----DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

论文分享(3)----DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations

  • 前言
  • 一、摘要
  • 二、模型解析
    • 1.定义问题
    • 2.Text Features
    • 3.Model
      • 3.1感知阶段
      • 3.2认知阶段
    • 4.模型图和结果
  • 总结


前言

提示:这里可以添加本文要记录的大概内容:

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


提示:以下是本篇文章正文内容,下面案例可供参考

一、摘要

本文重点研究的是对话中的情感,由于现有方面难以对情感线索的提取和整合,针对这一问题,作者提出了novel Contextual Reasoning Networks (DialogueCRN)。受情感认知理论的启发,设计了多回合推理模块,整合情感线索。

二、模型解析

1.定义问题

定义U=[u1,u2,…,uN]为一个对话中所包含的句子,N表示句子数量。P1,P2,…,PM表示对话U中有M个人。pφ(ui)表示句子和人的映射。对于λ ∈[1,M],Uλ 表示为Pλ 在U中所说话的集合,Uλ ={ui|ui∈U and u spoken by Pλ}

2.Text Features

本文是通过CNN和max_pooling来提取文本中上下文无关的特征,记为ui,其中ui∈du,du=100。

3.Model

本文把模型分为两个阶段,感知阶段和认知阶段。

3.1感知阶段

通过研究发现,对话中的特征主要分为,语境特征和说话者特征。所以本位将两者区分,其输出分别是U和Uλ,λ∈[1,M]
对于语境特征:
在这里插入图片描述

3.2认知阶段

受情感认知理论启发,这一过程是由多个回合组合而成,,而在每个回合中认知阶段又分为意识推理和直观检索两部分。则在第t个回合,情况如下:

在这里插入图片描述
总而言之,ui在Global Memory G和回合T的影响下变成qi,则
qsi = Cognitions(csi , Gs; Ts),
qvi = Cognitionv(cvi , Gv; Tv),
这之后文章整合两种特征送入分类层,得到预测结果。

4.模型图和结果

模型结构图
在这里插入图片描述

总结

作者构建了两类输入,一种是按原始句子顺序的输入,一种按speaker顺序的输入。这两种方式分别得到是句子语境信息和speak的情感色彩。在最终阶段把两类信息结合传入分类层,并最终提高了效果。

这篇关于论文分享(3)----DialogueCRN: Contextual Reasoning Networks for Emotion Recognition in Conversations的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782500

相关文章

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

java常用面试题-基础知识分享

什么是Java? Java是一种高级编程语言,旨在提供跨平台的解决方案。它是一种面向对象的语言,具有简单、结构化、可移植、可靠、安全等特点。 Java的主要特点是什么? Java的主要特点包括: 简单性:Java的语法相对简单,易于学习和使用。面向对象:Java是一种完全面向对象的语言,支持封装、继承和多态。跨平台性:Java的程序可以在不同的操作系统上运行,称为"Write once,

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已