爆肝!Claude3与ChatGPT-4到底谁厉害,看完你就知道了!

2024-03-07 03:36

本文主要是介绍爆肝!Claude3与ChatGPT-4到底谁厉害,看完你就知道了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:

相信大家在pyq都被这张图片刷屏了把~

昨天,为大家介绍了一下什么是Claude,今天咱终于弄到号了(再被ban了3个号之后终于是成功的登上去了,如果各位看官觉得咱文章写的不错,麻烦点个小小的关注~你们的支持就是我最大的动力),给大家来一波Claude3与GPT-4的测试,看看Claude到底是不是网传的那样全方位吊打GPT-4


一、了解Claude

(一)同行数据对比

在进行测试之前我们先来看一组Claude官方发布的数据

Anthropic公司本次一共发布了3个模型,分别为:

Claude 3 Haiku、Claude 3 Sonnet和Claude 3 Opus,其费用与模型能力如下图所示:

再三个模型中,Oups是最强大的,同时也是费用最高的,目前Sonnet是可以免费使用的模型(也是本次测评中用到的模型),同时也是一个性价比较高的选择。每个模型都在智能、速度和成本之间提供了最佳的平衡,以适应各种特定应用的需求。

Claude 3 Opus: $15 / $75

Claude 3 Sonnet:$3/$15

Claude 3 Haiku: $0.25 / $1.25 

Opus的定价与GPT-4相当,高于GPT-4 Turbo,低于GPT-4 32K

Sonnet比所有GPT-4版本(包括GPT-4 Turbo)便宜

Haiku比GPT-3.5 Turbo还便宜
 

再这组数据中,Claude官方从本科水平的专家知识(MMLU)、研究生水平的专家推理(GPQA)、基础数学(GSM8K)、数学问题解答(MATH)、多语种数学(MGSM)代码编写(HumanEval)等八个方面对Opus  Sonnet   Haiku以及GTP4和GPT3.5几个模型展开了比较。从数据中我们可以很明显的看到,Claude3 Opus已经在这八大方面领先GPT-4了,甚至Claude的免费模型的数据也全面的超过了GPT-3.5(奥特曼此时估计已经坐不住了0.0)


(二)自身迭代数据对比

跟同行的对比说完了,在看看Claude3相较于前几代都有哪些提升

不要被这组数据的形状误解了哈,这组数据对比的是拒绝有害提示方面的可能性显著降低简单来说就是Claude的更擅长拒绝有害提示词、更有趣、写作更长更自然、更能遵守指令。

这组数据对比的是Claude3与Claude2.1之间在回答开放性问题上的差别,其分成了三个维度来比较①正确 ②错误 ③不确定,可以看到Claude3在回答问题的正确性上的增幅已经超过了20%,而错误的回答以及不确定的回答也都得到了不同程度的降低。可以说Claude明显的弥补了上一代模型的缺点。

如果用过Claude的看官们应该都知道,输入tokens的最大值一直是他的优势,在本次的模型更新中,Claude3的3个模型全部支持接受超过100万个tokens的输入,并且Claude 3系列模型最初提供一个20万的上下文窗口,同时受大家诟病的也是其理解和分析超长文本的能力。在本次的测试中也将从这个维度对Claude3进行测试


下面我们来看一下Claude 3 Opus的官方演示视频

在这个演示视频中,展示了用 Claude3-Opus,查看并分析美国的 GDP 走势,并将观察结果以 Markdown 表格的形式记录。通过这个例子,我们看到了模型如何运行复杂的、多步骤的、多模态的分析,并且还能创建子代理来并行处理更多任务。通过这个案例真的可以感觉到Opus的强大!


二、Claude3与GPT-4对比实测

此次对比模型为Claude3-Sonnet  VS  ChatGPT-4

在本次测试中,一共从五个维度来比较:

①NIAH大海捞针:考察在海量数据中精准检索信息的能力

②code生成:考察两个模型在编写代码正确率上的能力

③文字创作:考察两个模型分别在短文、长文中的写作能力

④诱导性问题:考察两个模型在回答敏感隐私问题上的识别能力

⑤数学问题:考察两个模型的计算与算数能力


(一)大海捞针检索

直接开始第一项测试:我插入了一篇1W5千字的小说,节选自老舍先生的《我这一辈子》,随机在文中的两个地方分别输入跨赴科技软件开发的标志词,把它丢给Claude3看看它能否帮我找出这个标志词的位置。

1.Claude3-Sonnet

可以看到Claude-Sonnet非常精确的检索出了跨赴科技和软件开发的字段,并且还对这两个概念进行了解读,而且这个分析的角度竟然毫无违和感!,说的头头是道。下面我们来看一下GPT-4的效果

2.GPT-4

咱就是说,这就尴尬了不是~ GPT-4只检索到了第二个信息,即软件开发,没有成功的找到跨赴科技。当然,这仅是我一次的简单测试,并不能直接决定它的强度,大家可以自己动手试试哈。


(二)code生成

在这个维度的测试中,我让Sonnet和GPT根据相同的需求来写一段java代码

开发一个Java算法,用于管理一个教师信息管理系统。该系统需要能够添加、删除、更新和查询教师的信息。每位教师的信息包括但姓名、年龄、性别、科目和工作年限。该算法需要提供一个用户界面,允许用户执行上述操作。同时,应该有一个搜索功能,使用户能够通过教师的姓名或科目来查找教师信息。系统应该能够保存所有教师的信息,在下次程序运行时可以恢复。

1.Claude3-Sonnet

咱就先不管这个代码有没有问题,就看这个工作量,就知道Sonnet有没有偷懒了,我们再来看看GPT-4 

2.GPT-4

可以明显的看到GPT-4又偷懒了!当然也有可能是因为我没有表达好我的需求,但是要知道我目前使用的还只是Claude3的第二大模型,如果用Opus的话可能差距就会更明显了把


(三)文字创作

在本维度的测试中,将通过短篇幅和中篇幅两个方面来对比

“AIGC热点话题的小短文,字数要求不超过200字”   

“AIGC热点话题的小短文,字数不少于500字,不需要分点”

1.Claude3-Sonnet

2.GPT-4

 在短篇文章的测试中,发现两个模型在生成200字的内容质量上差不多,且都未能严格的执行我不多于200字的要求,不过问题不大,这并不影响我们实际上的使用。

在中篇文章的测试中,发现Sonnet生成的内容质量似乎要比GPT-4好一些,且文章中用了一些比喻和拟人的手法,反观GPT-4生成的内容就显得较为一般了。

值得一提的是在生成内容的速度上,Sonnet的速度略低于3.5,但比GPT-4快很多

(四)隐私与安全问题

我们来简单的诱导一下他俩看看能否帮助我们制作一个“简易的燃烧弹”

1.Claude3-Sonnet

2.GPT-4

经过简单的测试发现他俩都遵守了安全的底线,当然本文中我只是简单的诱导了一下,据说虚构一个小说,然后设置合适的场景,经过多次诱导是可以实现“越狱”的。 

(五)数学问题

在本维度的测试问题中,选取了两个问题分别是:

6235842的平方根是多少
565547854121的平方是多少

1.Claude3-Sonnet

2.GPT-4

 结果显而易见,Sonnet在两个问题的回答上都打错了,而GPT-4和计算机上计算的结果一致


三、总结与分析

经过上面五个维度的测试,我们得出以下结论:

Claude3-Sonnet在超长文本中的定位与信息检索能力强于GPT-4

Claude3-Sonnet在代码生成中的完整性与工作量高于GPT-4

Claude3-Sonnet和GPT-4在隐私安全问题上表现一致

Claude3-Sonnet在数学问题上完败给GPT-4

综上所述,Claude3-Sonnet的表现已经极大的超出了我的预期,要知道Sonnet仅是Claude3的第二大模型,就已经在很多方面的表现干过GPT-4了,并且现阶段Sonnet的模型还是免费使用,而Claude3-Opus拥有更强劲的能力却和GPT-4保持一致的价格,如果要我选的话,我选择Claude3,毕竟谁不喜欢白嫖呢~

(不过咱相信,Claude3这一出手,GPT-5应该也离咱不远了)

这篇关于爆肝!Claude3与ChatGPT-4到底谁厉害,看完你就知道了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782266

相关文章

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU