【DPDK】基于dpdk实现用户态UDP网络协议栈

2024-03-07 03:20

本文主要是介绍【DPDK】基于dpdk实现用户态UDP网络协议栈,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一.背景及导言
  • 二.协议栈架构设计
    • 1. 数据包接收和发送引擎
    • 2. 协议解析
    • 3. 数据包处理逻辑
  • 三.网络函数编写
    • 1.socket
    • 2.bind
    • 3.recvfrom
    • 4.sendto
    • 5.close
  • 四.总结

一.背景及导言

在当今数字化的世界中,网络通信的高性能和低延迟对于许多应用至关重要。而用户态网络协议栈通过摆脱传统内核态协议栈的限制,为实现更快速、灵活的数据包处理提供了新的可能性。本文将深入探讨基于DPDK的用户态UDP网络协议栈的设计、实现。

传统的内核态协议栈在处理网络通信时通常伴随着较大的性能开销,而用户态网络协议栈的崛起为高性能应用带来了全新的解决方案。DPDK,作为一款用于高性能数据平面应用的工具包,为用户态网络协议栈的实现提供了强大的支持。通过将网络协议栈移植到用户态,我们可以更灵活地优化数据包处理、提高吞吐量,并有效降低处理延迟。

二.协议栈架构设计

网络协议栈整体大致架构如下图所示:
在这里插入图片描述

1. 数据包接收和发送引擎

数据包接收和发送引擎负责从网络接口接收数据包,并将数据包发送到目标地址。通过DPDK提供的高性能数据包I/O接口,实现对多队列的支持,以提高并行性和吞吐量。

从网卡接收原始数据放入in_ring:
rte_eth_rx_burst();
out_ring中取出数据通过网卡发送:
rte_eth_tx_burst();

while(1) {// rxstruct rte_mbuf *rx[BURST_SIZE];// 内存池//接收unsigned num_recvd = rte_eth_rx_burst(gDpdkPortId, 0, rx, BURST_SIZE);if(num_recvd > BURST_SIZE) {rte_exit(EXIT_FAILURE, "Error receiving from eth\n");} else if(num_recvd > 0) {//入队列rte_ring_sp_enqueue_burst(ring->in, (void**)rx, num_recvd, NULL);}// txstruct rte_mbuf *tx[BURST_SIZE];//出队列unsigned nb_tx = rte_ring_sc_dequeue_burst(ring->out, (void**)tx, BURST_SIZE,NULL);if(nb_tx > 0) {//发送rte_eth_tx_burst(gDpdkPortId, 0, tx, nb_tx);unsigned i = 0;for(;i < nb_tx; i++) {rte_pktmbuf_free(tx[i]);}}static uint64_t prev_tsc = 0, cur_tsc;uint64_t diff_tsc;cur_tsc = rte_rdtsc();diff_tsc = cur_tsc - prev_tsc;if(diff_tsc > TIMER_RESOLUTION_CYCLES) {rte_timer_manage();prev_tsc = cur_tsc;}}

2. 协议解析

协议解析模块负责对接收到的UDP数据包进行解析,提取出源和目标端口号、校验和等关键信息。采用高效的解析算法,确保对数据包的处理不成为性能瓶颈。
从原始数据包中解析以太网头:

struct rte_ether_hdr *ehdr = rte_pktmbuf_mtod(mbufs[i],struct rte_ether_hdr*);

从原始数据包中(偏移以太网头)解析arp头:

struct rte_arp_hdr *ahdr = rte_pktmbuf_mtod_offset(mbufs[i],struct rte_arp_hdr *,sizeof(struct rte_ether_hdr));

从原始数据包中解析IP头:

struct rte_ipv4_hdr *iphdr = rte_pktmbuf_mtod_offset(mbufs[i], struct rte_ipv4_hdr *, sizeof(struct rte_ether_hdr));

通过IP头中的网络类型协议可以得知该数据包是UDP,TCP或ICMP包,通过类型强制转换可以得到相对应的数据包协议头。
通过IP头偏移1位强转可得到UDP/TCP头:

struct rte_udp_hdr *udphdr = (struct rte_udp_hdr *)(iphdr + 1);

通过IP头偏移1位强转可得到ICMP头:

struct rte_icmp_hdr *icmphdr = (struct rte_icmp_hdr *)(iphdr + 1);

不同的数据包调用不同的函数处理,通过对数据包的解析可以得到我们想要的IP地址,端口号,以太网地址,数据等。

3. 数据包处理逻辑

数据包处理逻辑包括各种应用层的逻辑,如数据包过滤、路由决策等。这一部分需要具体根据应用场景进行定制,以满足不同需求。
当用户接收并处理完数据包后得到新的用户数据需要发送,此时我们只需要逆向操作接收数据包的过程即可。
一个UDP数据帧组成结构如图所示,在用户数据上添加UDP头,在此基础上再添加IP头,最后再添加以太网头,一个UDP数据帧就组装完毕,就可直接通过网卡发送。
在这里插入图片描述
按UDP数据帧结构从用户数据从上往下依次组包。
在这里插入图片描述
!](https://img-blog.csdnimg.cn/direct/ede89757233f4dca8eff2eec63826075.png)

//1 etherstruct rte_ether_hdr *eth = (struct rte_ether_hdr*)msg;rte_memcpy(eth->s_addr.addr_bytes, src_mac, RTE_ETHER_ADDR_LEN);//源Mac地址rte_memcpy(eth->d_addr.addr_bytes, dst_mac, RTE_ETHER_ADDR_LEN);//目的Mac地址eth->ether_type = htons(RTE_ETHER_TYPE_IPV4);//类型

在这里插入图片描述

//2 iphdrstruct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr*)(msg + sizeof(struct rte_ether_hdr));ip->version_ihl = 0x45; //4位版本,4位首部长度ip->type_of_service = 0;//服务类型ip->total_length = htons(length - sizeof(struct rte_ether_hdr));//总长度ip->packet_id = 0;//16位标识ip->fragment_offset = 0;//偏移ip->time_to_live = 64; //TTLip->next_proto_id = IPPROTO_UDP;//8位协议ip->src_addr = sip;ip->dst_addr = dip;ip->hdr_checksum = 0;ip->hdr_checksum = rte_ipv4_cksum(ip);//首部校验和

UDP协议

//3 udpstruct rte_udp_hdr *udp = (struct rte_udp_hdr*)(msg + sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr));udp->src_port = sport;//源端口udp->dst_port = dport;//目的端口uint16_t udplen = length - sizeof(struct rte_ether_hdr) - sizeof(struct rte_ipv4_hdr);udp->dgram_len = htons(udplen);//长度rte_memcpy((uint8_t*)(udp + 1), data, udplen);udp->dgram_cksum = 0;udp->dgram_cksum = rte_ipv4_udptcp_cksum(ip, udp);//校验和

所有数据包都有以太网头,IP头arp头为第二层,TCP UDP ICMP为第三次,数据组包的时候只需根据需求选择不同的协议填空即可。

三.网络函数编写

定义主机,包括:唯一标识符,IP地址,Mac地址,协议,recvbuf,senfbuf,互斥锁,条件变量,链表结构。

struct localhost {int fd;uint32_t localip;uint8_t localmac[RTE_ETHER_ADDR_LEN];uint16_t localport;uint8_t protocol;struct rte_ring *recvbuf;struct rte_ring *sendbuf;struct localhost *prev;struct localhost *next;pthread_cond_t cond;pthread_mutex_t mutex;
};static struct localhost *lhost = NULL;

使用Hook自定义网络编程函数,或自定义网络函数名。

1.socket

static int 
socket(__attribute__((unused))int domain, int type, __attribute__((unused))int protocol) {int fd = get_fd_frombitmap();struct localhost *host = rte_malloc("localhost", sizeof(struct localhost), 0);if(host == NULL) {return -1;}memset(host, 0, sizeof(struct localhost));host->fd = fd;if(type == SOCK_DGRAM) {host->protocol = IPPROTO_UDP;} host->recvbuf =  rte_ring_create("recv buf",RING_SIZE,rte_socket_id(),RING_F_SP_ENQ | RING_F_SC_DEQ);if(host->recvbuf == NULL) {rte_free(host);return -1;}host->sendbuf =  rte_ring_create("send buf",RING_SIZE,rte_socket_id(),RING_F_SP_ENQ | RING_F_SC_DEQ);if(host->sendbuf == NULL) {rte_ring_free(host->recvbuf);rte_free(host);return -1;}pthread_cond_t blank_cond = PTHREAD_COND_INITIALIZER;rte_memcpy(&host->cond, &blank_cond, sizeof(pthread_cond_t));pthread_mutex_t blank_mutex = PTHREAD_MUTEX_INITIALIZER;rte_memcpy(&host->mutex, &blank_mutex, sizeof(pthread_mutex_t));LL_ADD(host, lhost);return fd;
}

2.bind

static int bind(int sockfd, const struct sockaddr *addr,__attribute__((unused))socklen_t addrlen) {struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) {return -1;}const struct sockaddr_in *laddr = (const struct sockaddr_in*)addr;host->localport = laddr->sin_port;rte_memcpy(&host->localip, &laddr->sin_addr.s_addr, sizeof(uint32_t));rte_memcpy(host->localmac, gSrcMac, RTE_ETHER_ADDR_LEN);return 0;
}

3.recvfrom

static ssize_t recvfrom(int sockfd, void *buf, size_t len, __attribute__((unused))int flags,struct sockaddr *src_addr, __attribute__((unused))socklen_t *addrlen){struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) return -1;struct sockaddr_in *saddr = (struct sockaddr_in*)src_addr;//dequeuestruct offload *ol = NULL;unsigned char *ptr = NULL;int nb = -1;//阻塞pthread_mutex_lock(&host->mutex);while((nb = rte_ring_mc_dequeue(host->recvbuf,(void**)&ol)) < 0) {pthread_cond_wait(&host->cond, &host->mutex);}pthread_mutex_unlock(&host->mutex);saddr->sin_port = ol->sport;rte_memcpy(&saddr->sin_addr.s_addr, &ol->sip, sizeof(uint32_t));struct in_addr addr;addr.s_addr = ol->dip;printf("nrecvto ---> src: %s:%d \n", inet_ntoa(addr), ntohs(ol->dport));if(len < ol->length) { //一次无法接收全部数据rte_memcpy(buf, ol->data, len);ptr = rte_malloc("unsigned char *", ol->length - len, 0);rte_memcpy(ptr, ol->data + len, ol->length - len);ol->length -= len;rte_free(ol->data);ol->data = ptr;rte_ring_mp_enqueue(host->recvbuf, ol);return len;} else {rte_memcpy(buf, ol->data, ol->length);rte_free(ol->data);rte_free(ol);return ol->length;}
}

4.sendto

static ssize_t sendto(int sockfd, const void *buf, size_t len, __attribute__((unused))int flags,const struct sockaddr *dest_addr, __attribute__((unused))socklen_t addrlen){struct localhost *host = get_hostinfo_fromfd(sockfd);if(host == NULL) return -1;const struct sockaddr_in *daddr = (const struct sockaddr_in*)dest_addr;struct offload *ol = rte_malloc("offload", sizeof(struct offload), 0);if(ol == NULL) {return -1;}ol->dip = daddr->sin_addr.s_addr;ol->dport = daddr->sin_port;ol->sip = host->localip;ol->sport = host->localport;ol->length = len;struct in_addr addr;addr.s_addr = ol->dip;printf("nsendto ---> src: %s:%d \n", inet_ntoa(addr), ntohs(ol->dport));ol->data = rte_malloc("ol data", len, 0);if(ol->data == NULL) {rte_free(ol);return -1;}rte_memcpy(ol->data, buf, len);rte_ring_mp_enqueue(host->sendbuf, ol);return len;   
}

5.close

static int nclose(int fd) {struct localhost *host = get_hostinfo_fromfd(fd);if(host == NULL) {return -1;}LL_REMOVE(host, lhost);if(host->recvbuf){rte_ring_free(host->recvbuf);}if(host->sendbuf){rte_ring_free(host->sendbuf);}rte_free(host);return 0;
}

四.总结

通过本文,我们深入研究了基于DPDK的用户态UDP网络协议栈的设计、实现。在整体设计思路上,我们采用了用户态网络协议栈的理念,通过将核心功能移至用户空间,结合DPDK的强大支持,实现了一个高性能、低延迟的数据包处理方案。

关键组成部分中,我们详细介绍了数据包接收和发送引擎、协议解析、数据包处理逻辑等模块。这些组成部分共同协作,使得用户态UDP网络协议栈能够在不同应用场景下发挥其优势。

整体架构图清晰展示了各个模块之间的关系,以及数据在协议栈中的流动路径。这有助于读者更好地理解我们设计的用户态UDP网络协议栈的整体结构。

通过对用户态UDP网络协议栈的研究,我们不仅深刻理解了其设计和实现,也为构建更高性能、更灵活的网络通信系统奠定了基础。未来,我们期待在这一基础上进一步优化和扩展,以满足不断发展的网络应用需求。

链接: 基于DPDK实现的UDP用户态网络协议栈完整代码

这篇关于【DPDK】基于dpdk实现用户态UDP网络协议栈的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/782248

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

C++——stack、queue的实现及deque的介绍

目录 1.stack与queue的实现 1.1stack的实现  1.2 queue的实现 2.重温vector、list、stack、queue的介绍 2.1 STL标准库中stack和queue的底层结构  3.deque的简单介绍 3.1为什么选择deque作为stack和queue的底层默认容器  3.2 STL中对stack与queue的模拟实现 ①stack模拟实现

VC网络协议

// PCControlDlg.cpp : 实现文件//#include "stdafx.h"#include "PCControl.h"#include "PCControlDlg.h"#include "afxdialogex.h"#ifdef _DEBUG#define new DEBUG_NEW#endif// 用于应用程序“关于”菜单项的 CAboutDlg 对话框#ifde