在整个价值链构建负责任的 AI

2024-03-06 12:52

本文主要是介绍在整个价值链构建负责任的 AI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在整个价值链构建负责任的 AI:从数据到部署,以合乎伦理道德的方式构建 AI

构建合乎伦理道德的 AI 是所有人工智能企业的责任,这一点再怎么强调都不为过。负责任或合乎伦理道德的 AI 能够做到公正、公平,并能改善AI服务人群的生活质量。在实践中,这要求 AI 实践者将伦理道德框架应用于构建 AI 的每项工作之中,确保所涉及的人员、流程和工具服务于这项更重大的使命。

在整个 AI 价值链中,负责任的 AI 应该在一些关键接触点发挥作用。如果 AI 开发者忽略了任何一个接触点,就会导致 AI 项目因不符合公平公正原则而面临风险。AI 实践者在构建负责任的 AI 时,首先应了解价值链各环节间如何相互影响,以及每一环节需要考虑的因素。

AI 开发周期

在开发 AI 项目之前,您的团队可以先采取一些行动,为打造合乎伦理道德的 AI 产品奠定基础。

了解产品必须遵守的法规。这些法规因地区不同而有所差异;例如,《通用数据保护条例》(GDPR) 适用于欧盟地区的 AI 开发应用。

从负责任的角度出发,建立一个 AI 治理框架。在框架中列出指导性问题,帮助您明确 AI 开发生命周期中需要考虑的关键因素。数据治理尤其应该成为重点关注领域,因为它对模型性能具有重大影响。

招募多元化的数据科学家和研究人员团队,为 AI 开发带来不同的视角和经验。

完成上述几个初始行动后,您可以更好地在 AI 构建过程中做出负责任的决策。一旦确定了需要解决的业务问题,AI 价值链便从数据采集开始,通过部署逐步向前推进,然后在后期制作的再训练过程中不断循环。我们将介绍每个环节需要考虑的与负责任的 AI 有关的关键因素:

数据采集

在采集数据时,要尽可能保证数据的完整性和广泛性。数据所代表的最终用户类型(尤其是数据各自的使用场景)越多,您的 AI 就能更好地服务于各类群体。只有当 AI 产品公平地为每一个人服务时,才能构建合乎伦理道德的 AI,而代表性数据就是建立公平的基础。

如果是从第三方获取数据,则理应由双方共同承担责任,确保数据无偏见。此外,最好不要做任何假设。例如,在采集科学家的图像数据时,不能假设数据集或所有统计数据已代表全部类型的科学家。即使您早已了解数据的完整性和广泛性有多重要,最后您还需要付诸行动,仔细检查数据质量,以确保数据涵盖所有可能存在的使用场景。

数据准备

通常,当我们在谈论负责任的 AI 并提到与数据准备有关的内容时,我们的关注点是标注过程本身,并且目标是采用准确和无偏见原则进行标注。确实,这一点十分关键,会影响到最终模型性能中的偏见程度。数据准备的关键在于通过招募多元化群体(最好能够广泛代表您的最终用户)来提供数据标注。多元化群体能够带来不同的视角,并减少片面化的判断。

在数据准备中,我们往往会忽略数据背后的个体待遇。作为 AI 实践者,必须确保这些个体得到公平对待,因为他们是 AI 价值链中重要却不被重视的一部分。公平待遇包括提供公平薪酬、保护隐私权以及提供开放的反馈渠道。(想要了解澳鹏是如何为标注员提供福祉,请参阅《众包伦理道德规范》)。

模型训练和测试

负责任的 AI 不仅与数据有关。当您构建好模型并开始使用准备好的数据对模型进行训练时,您将需要监测模型性能。性能评估的最常见指标是模型预测的准确性(例如,对于捕捉人们过马路的图像,模型是否总能识别出其中的行人?)。

然而,在评估准确性时需要关注更多细微差别。您需要针对各个最终用户群体来评估模型的准确性。您选择的群体取决于您需要解决的问题,但在与受保护群体(即在种族或性别等方面具有共同特征并且受法律保护的群体)接触时,请时刻留意一个问题,即在为保护群体与非保护群体提供服务时,模型是否能够做到公平公正?如果无法做到,您可能需要使用其他数据重新训练模型,这些数据要能够代表被模型差别对待的群体。

除了评估模型准确性外,还可以考虑增加一个直接评估偏见的指标。虽然增加偏见评估指标可以帮助您快速发现与偏见有关的实例,但不应以此取代常规的人工质量检查。请注意,如果您需要进一步了解如何将这项指标添加到任务面板,可以使用提供此功能的软件选项。

后期处理

在完成模型部署后,持续评估模型在各用户群体中的表现,并检查模型是否按照预期运作。在这过程中,确保用户能轻松提供反馈是一项重要工作,这能够帮助您尽快发现并解决问题。

如果您从不对模型进行重新训练,模型性能就会随着时间的推移而逐渐降低;大多数模型并不在静态环境中运行,而是会经常遇到新的不断变化的数据。您需要重新采集数据并在剩余的 AI 开发周期中,定期使用新数据来重新训练模型。

构建负责任的 AI 的后续步骤

如果从全局来看,我们仍然需要不断推动负责任的 AI 向前发展。更多企业需要明白,负责任的 AI 是获得成功的必要条件,它是一项重要的工作任务,而不仅仅只是一种锦上添花。如果有更多企业能够接受这一概念,或许未来就不需要制定可能会妨碍 AI 发展的严格法规。

作为 AI 实践者,您目前还能采取哪些行动来推动负责任的 AI 继续向前发展?您可以持续关注与符合伦理道德的 AI 有关的最新消息,了解不同行业对负责任的 AI 的看法,以及向客户和标注员寻求定期反馈。详细记录您在开发过程中所做的选择和使用的工具,帮助解决 AI 的可解释性问题,协助我们所有人更好地了解这些创新理念的运作方式。最重要的是,在整个 AI 开发周期中,以公平和包容的方式开展各种项目。

这篇关于在整个价值链构建负责任的 AI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/780124

相关文章

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了