基于openKylin与RISC-V的MindSpore AI项目实践

2024-03-06 04:36

本文主要是介绍基于openKylin与RISC-V的MindSpore AI项目实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目目标

  • openKylin系统上安装和配置MindSpore框架。
  • 开发一个简单的图像分类模型,并在RISC-V平台上进行训练和推理。
  • 根据RISC-V的特性,对MindSpore框架进行必要的优化。

目录

项目目标:

训练模型

编写训练代码,设置优化器、损失函数等,并开始训练模型。

模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。

针对RISC-V优化

部署与测试

 总结:



步骤一:安装MindSpore

  • 首先,我们需要在openKylin系统上安装MindSpore
    • 请参照MindSpore官方文档,根据openKylin系统的特性进行安装。--MindSpore官方文档

步骤二:准备数据集

  • 选择一个适合图像分类的数据集,如MNIST或CIFAR-10。下载数据集,并将其预处理为MindSpore可以识别的格式。

 (没有的开发者们可以找我哦)


步骤三:编写模型代码

  • 使用MindSpore编写一个简单的卷积神经网络(CNN)模型,用于图像分类。

 

import mindspore.nn as nn  
from mindspore import Tensor  
from mindspore.ops import operations as P  class SimpleCNN(nn.Cell):  def __init__(self, num_classes=10):  super(SimpleCNN, self).__init__()  self.conv1 = nn.Conv2d(3, 32, 3, pad_mode='same')  self.relu1 = nn.ReLU()  self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  self.conv2 = nn.Conv2d(32, 64, 3, pad_mode='same')  self.relu2 = nn.ReLU()  self.max_pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  self.flatten = nn.Flatten()  self.fc1 = nn.Dense(64 * 7 * 7, 128)  self.relu3 = nn.ReLU()  self.fc2 = nn.Dense(128, num_classes)  def construct(self, x):  x = self.conv1(x)  x = self.relu1(x)  x = self.max_pool1(x)  x = self.conv2(x)  x = self.relu2(x)  x = self.max_pool2(x)  x = self.flatten(x)  x = self.fc1(x)  x = self.relu3(x)  x = self.fc2(x)  return x  # 实例化模型  
model = SimpleCNN()

  • 训练模型

  • 编写训练代码,设置优化器、损失函数等,并开始训练模型。
from mindspore import context  
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor  
from mindspore.train.loss_scale_manager import FixedLossScaleManager  
from mindspore import Tensor  
from mindspore.nn import SoftmaxCrossEntropyWithLogits  
from mindspore.train import Model  # 设置上下文环境  
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # 创建数据加载器  
# ...  # 创建损失函数和优化器  
criterion = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")  
optimizer = nn.Momentum(model.trainable_params(), learning_rate=0.01, momentum=0.9)  # 配置模型保存  
config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10)  
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_simplecnn", directory="./", config=config_ck)  # 开始训练  
model = Model(model, criterion, optimizer, metrics={"Accuracy": nn.Accuracy()},  loss_scale_manager=FixedLossScaleManager())  
model.train(epoch_num, train_dataset, callbacks=[ckpoint_cb, LossMonitor(100)], dataset_sink_mode=True)

  • 模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。
# 加载模型参数  
param_dict = load_checkpoint("./checkpoint_simplecnn-1_1000.ckpt")  
load_param_into_net(model, param_dict)  # 设置输入图像  
# 假设我们有一个预处理后的图像tensor,名为'input_tensor',大小为[1, 3, 32, 32]  
# input_tensor = ...  # 使用模型进行推理  
output = model(input_tensor)  # 输出预测结果  
predicted_class = output.asnumpy().argmax()  
print(f"Predicted class: {predicted_class}")

  • 针对RISC-V优化

  • RISC-V架构的优化可能涉及多个层面,包括算法层面的优化、框架层面的优化以及硬件层面的优化。这里,我们主要关注框架层面的优化。
  • 算法优化:针对RISC-V的特点,如整数运算性能高、内存访问延迟大等,可以优化模型中的算法,减少浮点运算,利用RISC-V的整数运算优势。
  • 内存访问优化RISC-V的内存访问延迟可能较大,因此可以通过减少内存访问次数、优化内存访问模式(如使用缓存友好的数据结构)来减少延迟。
  • 模型剪枝与量化:通过模型剪枝减少模型复杂度,通过量化减少模型大小并加速推理。
  • 部署与测试

  • openKylin系统上部署优化后的AI应用,并进行实际测试,确保应用能够稳定运行,并且性能达到预期。


 总结:

        通过上述步骤,我们展示了如何在openKylin系统上基于MindSpore框架开发并优化一个图像分类AI应用,并部署在RISC-V平台上进行推理。这个过程涉及了模型的构建、训练、推理以及针对特定硬件架构的优化,是AI应用在实际应用中不可或缺的一部分。

这篇关于基于openKylin与RISC-V的MindSpore AI项目实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778854

相关文章

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

SpringBoot项目启动报错"找不到或无法加载主类"的解决方法

《SpringBoot项目启动报错找不到或无法加载主类的解决方法》在使用IntelliJIDEA开发基于SpringBoot框架的Java程序时,可能会出现找不到或无法加载主类com.example.... 目录一、问题描述二、排查过程三、解决方案一、问题描述在使用 IntelliJ IDEA 开发基于

SpringBoot项目使用MDC给日志增加唯一标识的实现步骤

《SpringBoot项目使用MDC给日志增加唯一标识的实现步骤》本文介绍了如何在SpringBoot项目中使用MDC(MappedDiagnosticContext)为日志增加唯一标识,以便于日... 目录【Java】SpringBoot项目使用MDC给日志增加唯一标识,方便日志追踪1.日志效果2.实现步

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定