基于openKylin与RISC-V的MindSpore AI项目实践

2024-03-06 04:36

本文主要是介绍基于openKylin与RISC-V的MindSpore AI项目实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目目标

  • openKylin系统上安装和配置MindSpore框架。
  • 开发一个简单的图像分类模型,并在RISC-V平台上进行训练和推理。
  • 根据RISC-V的特性,对MindSpore框架进行必要的优化。

目录

项目目标:

训练模型

编写训练代码,设置优化器、损失函数等,并开始训练模型。

模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。

针对RISC-V优化

部署与测试

 总结:



步骤一:安装MindSpore

  • 首先,我们需要在openKylin系统上安装MindSpore
    • 请参照MindSpore官方文档,根据openKylin系统的特性进行安装。--MindSpore官方文档

步骤二:准备数据集

  • 选择一个适合图像分类的数据集,如MNIST或CIFAR-10。下载数据集,并将其预处理为MindSpore可以识别的格式。

 (没有的开发者们可以找我哦)


步骤三:编写模型代码

  • 使用MindSpore编写一个简单的卷积神经网络(CNN)模型,用于图像分类。

 

import mindspore.nn as nn  
from mindspore import Tensor  
from mindspore.ops import operations as P  class SimpleCNN(nn.Cell):  def __init__(self, num_classes=10):  super(SimpleCNN, self).__init__()  self.conv1 = nn.Conv2d(3, 32, 3, pad_mode='same')  self.relu1 = nn.ReLU()  self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  self.conv2 = nn.Conv2d(32, 64, 3, pad_mode='same')  self.relu2 = nn.ReLU()  self.max_pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  self.flatten = nn.Flatten()  self.fc1 = nn.Dense(64 * 7 * 7, 128)  self.relu3 = nn.ReLU()  self.fc2 = nn.Dense(128, num_classes)  def construct(self, x):  x = self.conv1(x)  x = self.relu1(x)  x = self.max_pool1(x)  x = self.conv2(x)  x = self.relu2(x)  x = self.max_pool2(x)  x = self.flatten(x)  x = self.fc1(x)  x = self.relu3(x)  x = self.fc2(x)  return x  # 实例化模型  
model = SimpleCNN()

  • 训练模型

  • 编写训练代码,设置优化器、损失函数等,并开始训练模型。
from mindspore import context  
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor  
from mindspore.train.loss_scale_manager import FixedLossScaleManager  
from mindspore import Tensor  
from mindspore.nn import SoftmaxCrossEntropyWithLogits  
from mindspore.train import Model  # 设置上下文环境  
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # 创建数据加载器  
# ...  # 创建损失函数和优化器  
criterion = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")  
optimizer = nn.Momentum(model.trainable_params(), learning_rate=0.01, momentum=0.9)  # 配置模型保存  
config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10)  
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_simplecnn", directory="./", config=config_ck)  # 开始训练  
model = Model(model, criterion, optimizer, metrics={"Accuracy": nn.Accuracy()},  loss_scale_manager=FixedLossScaleManager())  
model.train(epoch_num, train_dataset, callbacks=[ckpoint_cb, LossMonitor(100)], dataset_sink_mode=True)

  • 模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。
# 加载模型参数  
param_dict = load_checkpoint("./checkpoint_simplecnn-1_1000.ckpt")  
load_param_into_net(model, param_dict)  # 设置输入图像  
# 假设我们有一个预处理后的图像tensor,名为'input_tensor',大小为[1, 3, 32, 32]  
# input_tensor = ...  # 使用模型进行推理  
output = model(input_tensor)  # 输出预测结果  
predicted_class = output.asnumpy().argmax()  
print(f"Predicted class: {predicted_class}")

  • 针对RISC-V优化

  • RISC-V架构的优化可能涉及多个层面,包括算法层面的优化、框架层面的优化以及硬件层面的优化。这里,我们主要关注框架层面的优化。
  • 算法优化:针对RISC-V的特点,如整数运算性能高、内存访问延迟大等,可以优化模型中的算法,减少浮点运算,利用RISC-V的整数运算优势。
  • 内存访问优化RISC-V的内存访问延迟可能较大,因此可以通过减少内存访问次数、优化内存访问模式(如使用缓存友好的数据结构)来减少延迟。
  • 模型剪枝与量化:通过模型剪枝减少模型复杂度,通过量化减少模型大小并加速推理。
  • 部署与测试

  • openKylin系统上部署优化后的AI应用,并进行实际测试,确保应用能够稳定运行,并且性能达到预期。


 总结:

        通过上述步骤,我们展示了如何在openKylin系统上基于MindSpore框架开发并优化一个图像分类AI应用,并部署在RISC-V平台上进行推理。这个过程涉及了模型的构建、训练、推理以及针对特定硬件架构的优化,是AI应用在实际应用中不可或缺的一部分。

这篇关于基于openKylin与RISC-V的MindSpore AI项目实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778854

相关文章

将Java项目提交到云服务器的流程步骤

《将Java项目提交到云服务器的流程步骤》所谓将项目提交到云服务器即将你的项目打成一个jar包然后提交到云服务器即可,因此我们需要准备服务器环境为:Linux+JDK+MariDB(MySQL)+Gi... 目录1. 安装 jdk1.1 查看 jdk 版本1.2 下载 jdk2. 安装 mariadb(my

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加