基于openKylin与RISC-V的MindSpore AI项目实践

2024-03-06 04:36

本文主要是介绍基于openKylin与RISC-V的MindSpore AI项目实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目目标

  • openKylin系统上安装和配置MindSpore框架。
  • 开发一个简单的图像分类模型,并在RISC-V平台上进行训练和推理。
  • 根据RISC-V的特性,对MindSpore框架进行必要的优化。

目录

项目目标:

训练模型

编写训练代码,设置优化器、损失函数等,并开始训练模型。

模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。

针对RISC-V优化

部署与测试

 总结:



步骤一:安装MindSpore

  • 首先,我们需要在openKylin系统上安装MindSpore
    • 请参照MindSpore官方文档,根据openKylin系统的特性进行安装。--MindSpore官方文档

步骤二:准备数据集

  • 选择一个适合图像分类的数据集,如MNIST或CIFAR-10。下载数据集,并将其预处理为MindSpore可以识别的格式。

 (没有的开发者们可以找我哦)


步骤三:编写模型代码

  • 使用MindSpore编写一个简单的卷积神经网络(CNN)模型,用于图像分类。

 

import mindspore.nn as nn  
from mindspore import Tensor  
from mindspore.ops import operations as P  class SimpleCNN(nn.Cell):  def __init__(self, num_classes=10):  super(SimpleCNN, self).__init__()  self.conv1 = nn.Conv2d(3, 32, 3, pad_mode='same')  self.relu1 = nn.ReLU()  self.max_pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  self.conv2 = nn.Conv2d(32, 64, 3, pad_mode='same')  self.relu2 = nn.ReLU()  self.max_pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  self.flatten = nn.Flatten()  self.fc1 = nn.Dense(64 * 7 * 7, 128)  self.relu3 = nn.ReLU()  self.fc2 = nn.Dense(128, num_classes)  def construct(self, x):  x = self.conv1(x)  x = self.relu1(x)  x = self.max_pool1(x)  x = self.conv2(x)  x = self.relu2(x)  x = self.max_pool2(x)  x = self.flatten(x)  x = self.fc1(x)  x = self.relu3(x)  x = self.fc2(x)  return x  # 实例化模型  
model = SimpleCNN()

  • 训练模型

  • 编写训练代码,设置优化器、损失函数等,并开始训练模型。
from mindspore import context  
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor  
from mindspore.train.loss_scale_manager import FixedLossScaleManager  
from mindspore import Tensor  
from mindspore.nn import SoftmaxCrossEntropyWithLogits  
from mindspore.train import Model  # 设置上下文环境  
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")  # 创建数据加载器  
# ...  # 创建损失函数和优化器  
criterion = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")  
optimizer = nn.Momentum(model.trainable_params(), learning_rate=0.01, momentum=0.9)  # 配置模型保存  
config_ck = CheckpointConfig(save_checkpoint_steps=1000, keep_checkpoint_max=10)  
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_simplecnn", directory="./", config=config_ck)  # 开始训练  
model = Model(model, criterion, optimizer, metrics={"Accuracy": nn.Accuracy()},  loss_scale_manager=FixedLossScaleManager())  
model.train(epoch_num, train_dataset, callbacks=[ckpoint_cb, LossMonitor(100)], dataset_sink_mode=True)

  • 模型推理

在模型训练完成后,我们可以进行推理,即使用训练好的模型对新的图像进行分类。首先,我们需要加载训练好的模型参数,然后将这些参数加载到我们的模型中。
# 加载模型参数  
param_dict = load_checkpoint("./checkpoint_simplecnn-1_1000.ckpt")  
load_param_into_net(model, param_dict)  # 设置输入图像  
# 假设我们有一个预处理后的图像tensor,名为'input_tensor',大小为[1, 3, 32, 32]  
# input_tensor = ...  # 使用模型进行推理  
output = model(input_tensor)  # 输出预测结果  
predicted_class = output.asnumpy().argmax()  
print(f"Predicted class: {predicted_class}")

  • 针对RISC-V优化

  • RISC-V架构的优化可能涉及多个层面,包括算法层面的优化、框架层面的优化以及硬件层面的优化。这里,我们主要关注框架层面的优化。
  • 算法优化:针对RISC-V的特点,如整数运算性能高、内存访问延迟大等,可以优化模型中的算法,减少浮点运算,利用RISC-V的整数运算优势。
  • 内存访问优化RISC-V的内存访问延迟可能较大,因此可以通过减少内存访问次数、优化内存访问模式(如使用缓存友好的数据结构)来减少延迟。
  • 模型剪枝与量化:通过模型剪枝减少模型复杂度,通过量化减少模型大小并加速推理。
  • 部署与测试

  • openKylin系统上部署优化后的AI应用,并进行实际测试,确保应用能够稳定运行,并且性能达到预期。


 总结:

        通过上述步骤,我们展示了如何在openKylin系统上基于MindSpore框架开发并优化一个图像分类AI应用,并部署在RISC-V平台上进行推理。这个过程涉及了模型的构建、训练、推理以及针对特定硬件架构的优化,是AI应用在实际应用中不可或缺的一部分。

这篇关于基于openKylin与RISC-V的MindSpore AI项目实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778854

相关文章

javafx 如何将项目打包为 Windows 的可执行文件exe

《javafx如何将项目打包为Windows的可执行文件exe》文章介绍了三种将JavaFX项目打包为.exe文件的方法:方法1使用jpackage(适用于JDK14及以上版本),方法2使用La... 目录方法 1:使用 jpackage(适用于 JDK 14 及更高版本)方法 2:使用 Launch4j(

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot项目引入token设置方式

《SpringBoot项目引入token设置方式》本文详细介绍了JWT(JSONWebToken)的基本概念、结构、应用场景以及工作原理,通过动手实践,展示了如何在SpringBoot项目中实现JWT... 目录一. 先了解熟悉JWT(jsON Web Token)1. JSON Web Token是什么鬼

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择

Jenkins中自动化部署Spring Boot项目的全过程

《Jenkins中自动化部署SpringBoot项目的全过程》:本文主要介绍如何使用Jenkins从Git仓库拉取SpringBoot项目并进行自动化部署,通过配置Jenkins任务,实现项目的... 目录准备工作启动 Jenkins配置 Jenkins创建及配置任务源码管理构建触发器构建构建后操作构建任务

Nginx、Tomcat等项目部署问题以及解决流程

《Nginx、Tomcat等项目部署问题以及解决流程》本文总结了项目部署中常见的four类问题及其解决方法:Nginx未按预期显示结果、端口未开启、日志分析的重要性以及开发环境与生产环境运行结果不一致... 目录前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template