Pytorch学习 day03(Tensorboard、Transforms)

2024-03-06 03:28

本文主要是介绍Pytorch学习 day03(Tensorboard、Transforms),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tensorboard

  • Tensorboard能够可视化loss的变化过程,便于我们查看模型的训练状态,也能查看模型当前的输入和输出结果
    • 在Pycharm中,可以通过按住ctrl,并左键点击某个库来进入源文件查看该库的使用方法
    • SummaryWriter是用来向log_dir文件夹中写入事件文件的一个类,并且该事件文件可以被tensorboard解析,如下:
class SummaryWriter:"""Writes entries directly to event files in the log_dir to beconsumed by TensorBoard.The `SummaryWriter` class provides a high-level API to create an event filein a given directory and add summaries and events to it. The class updates thefile contents asynchronously. This allows a training program to call methodsto add data to the file directly from the training loop, without slowing downtraining."""
* 我们可以创建SummaryWriter对象来在logs文件夹下生成log文件,如下:
* 同时每次生成的writer()对象都会生成log文件,tensorboard --logdir logs 会将 logs文件夹下的log文件全展示出来
from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter("logs")  # 创建一个writer对象  logs是保存的路径# writer.add_image()    # 添加图像
for i in range(10):writer.add_scalar("y=3x", 4*i, i)     # 添加标量writer.close()  # 关闭writer
* 通过SummaryWriter中的.add_scalar()函数,向logs文件夹的log文件添加标量数据,tensorboard 可以根据logs文件夹中的log文件,绘制图像,如下:

在这里插入图片描述
在这里插入图片描述
* 但是每次绘制图像前,如果不更换图片的标题,那么最好删除之前绘制的log文件,避免出现图像混乱,如下:
在这里插入图片描述

  • 可以通过SummaryWriter中的.add_image()函数,来向logs文件夹中的log文件添加图像数据,tensorboard可以根据logs文件中的log文件,展示图像,如下:
    在这里插入图片描述

Transforms

  • transforms指transforms.py(python文件),相当于一个工具箱

  • 我们从工具箱中选取一个工具模板(class类),根据自己的需求打造一个具体的工具,把特定格式的图片经过这个工具,得到我们想要的图片变换结果
    在这里插入图片描述

  • transforms的使用方法:

from PIL import Image
from torchvision import transforms# 通过transforms.ToTensor()将PIL图像转换为张量
# 1. transforms怎么使用# 绝对路径:D:\learn_pytorch\learn_pytorch\Dataset\train\ants_image\0013035.jpg
# 相对路径:Dataset/train/ants_image/0013035.jpgimg_path = "Dataset/train/ants_image/0013035.jpg"   # 相对路径
img = Image.open(img_path)  # 打开图像tensor_trans = transforms.ToTensor()    # 实例化transforms.ToTensor()类
img_tensor = tensor_trans(img)  # 调用实例化对象的__call__方法  # 将PIL图像转换为张量
print(img_tensor)   # tensor([[[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000],
* 注意:这里的_ _ call _ _ 方法跟_ _ init _ _ 方法都是是python的一种内置方法,也叫魔法方法,但是它们两不一样,如下:
1. _ _ call _ _方法是把对象当成函数来使用的时候,会自动调用,也就是说把类的实例化对象,变成一个可以调用的对象,可以让实例对象可以像函数一样被调用。
2. 在python官网里面说的是,此方法会在实例作为一个函数被“调用”时被调用。例如: 
class A:# 定义__call__方法def __call__(self, a, b):print("调用__call__()方法,把对象当成函数来使用", a, b)def hello(self, e, f):print("调用hello" + e + f)c = A()
c("我是参数a", "你是参数b")  # 调用方法一
print("-" * 100)
c.hello("我是参数e", "你是参数f")# 调用__call__()方法,把对象当成函数来使用 我是参数a 你是参数b
# ----------------------------------------------------------------------------------------------------
# 调用hello我是参数e你是参数f
  • tensor数据类型
    • 下图可以看到tensor数据类型包含神经网络所需要的参数
      在这里插入图片描述
      在这里插入图片描述
    • 我们可以将PIL格式的图片传给ToTensor,也可以将ndarray格式的图片传给ToTensor
    • 可以使用opencv来将图片读取成ndarray格式,如下:
      在这里插入图片描述
      在这里插入图片描述
    • tensorboard 可以展示ndarray格式的图片,也可以展示tensor格式的图片,如下:
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms# 通过transforms.ToTensor()将PIL图像转换为张量
# 1. transforms怎么使用# 绝对路径:D:\learn_pytorch\learn_pytorch\Dataset\train\ants_image\0013035.jpg
# 相对路径:Dataset/train/ants_image/0013035.jpgimg_path = "Dataset/train/ants_image/0013035.jpg"   # 相对路径
# img_path = "learn_pytorch/Dataset/train/ants_image/0013035.jpg"   # 相对路径
img = Image.open(img_path)  # 打开图像writer = SummaryWriter("logs")
tensor_trans = transforms.ToTensor()      # 实例化transforms.ToTensor()类
img_tensor = tensor_trans(img)  # 调用实例化对象的__call__方法    # 将PIL图像转换为张量writer.add_image("tensor_img", img_tensor)  # 将张量写入tensorboard
writer.close()

在这里插入图片描述

这篇关于Pytorch学习 day03(Tensorboard、Transforms)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778731

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件