spark【例子】同类合并、计算(主要使用groupByKey)

2024-03-06 03:08

本文主要是介绍spark【例子】同类合并、计算(主要使用groupByKey),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

例子描述:

【同类合并、计算】

主要为两部分,将同类的数据分组归纳到一起,并将分组后的数据进行简单数学计算。 
难点在于怎么去理解groupBy和groupByKey

原始数据 
2010-05-04 12:50,10,10,10 
2010-05-05 13:50,20,20,20 
2010-05-06 14:50,30,30,30 
2010-05-05 13:50,20,20,20 
2010-05-06 14:50,30,30,30 
2010-05-04 12:50,10,10,10 
2010-05-04 11:50,10,10,10

结果数据 
2010-05-05 13:50,40,40,40 
2010-05-04 12:50,20,20,20 
2010-05-06 14:50,60,60,60 
2010-05-04 11:50,10,10,10


代码片段:

/* 同类合并、计算 */val source = Source.fromFile("E:test.txt").getLines.toArray
val sourceRDD = sc.parallelize(source)                                  /* spark单机读取数据 */
sourceRDD.map {line =>val lines = line.split(",")                                         /* 拆分数据 */(s"${lines(0)}", s"${lines(1)},${lines(2)},${lines(3)}")            /* 找出同样的数据为K,需要进行计算的为V,拼成map */
}.groupByKey.map {                                                      /* 分组,最重要的就是这,同类的数据分组到一起,后面只需要计算V了 */case (k, v) =>var a, b, c = 0                                                     /* 定义几个存数据的变量,恩,这很java,一般scala中很少见到var */v.foreach {                                                         /* 遍历需要计算的V  */x =>val r = x.split(",")                                            /* 将V拆分 */a += r(0).toInt                                                 /* 计算 */b += r(1).toIntc += r(2).toInt}s"$k,$a,$b,$c"                                                      /* 拼字符串,返回数据 */
}.foreach(println)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
0

这篇关于spark【例子】同类合并、计算(主要使用groupByKey)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778690

相关文章

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超