imgaug数据增强实例

2024-03-05 21:32
文章标签 数据 实例 增强 imgaug

本文主要是介绍imgaug数据增强实例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 这里给出一个数据增强包imgaug的应用实例


可以简单修改数据路径即可运行程序,对数据进行增强,可以加上对文件夹下的dataset遍历,批处理数据增强。程序来源于Imgaug的github issues便通过做修改,运行于ubuntu,win10下数据写出有问题:

'see' command line parameter default in ubuntu

import imgaug as ia
from imgaug import augmenters as iaa
import numpy as np
import cv2im = cv2.imread('C:/Users/admin/Desktop/20130201_m007.jpg')
im = cv2.resize(im, (224,224)).astype(np.int8)
images = np.zeros([2,224,224,3])
images[0] = im# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
# e.g. Sometimes(0.5, GaussianBlur(0.3)) would blur roughly every second image.
st = lambda aug: iaa.Sometimes(0.3, aug)# Define our sequence of augmentation steps that will be applied to every image
# All augmenters with per_channel=0.5 will sample one value _per image_
# in 50% of all cases. In all other cases they will sample new values
# _per channel_.
seq = iaa.Sequential([iaa.Fliplr(0.5), # horizontally flip 50% of all imagesiaa.Flipud(0.5), # vertically flip 50% of all imagesst(iaa.Superpixels(p_replace=(0, 1.0), n_segments=(20, 200))), # convert images into their superpixel representationst(iaa.Crop(percent=(0, 0.1))), # crop images by 0-10% of their height/widthst(iaa.GaussianBlur((0, 3.0))), # blur images with a sigma between 0 and 3.0st(iaa.Sharpen(alpha=(0, 1.0), )), # sharpen imagesst(iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0))), # emboss images# search either for all edges or for directed edgesst(iaa.Sometimes(0.5,iaa.EdgeDetect(alpha=(0, 0.7)),iaa.DirectedEdgeDetect(alpha=(0, 0.7), direction=(0.0, 1.0)),)),st(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.2), per_channel=0.5)), # add gaussian noise to imagesst(iaa.Dropout((0.0, 0.1), per_channel=0.5)), # randomly remove up to 10% of the pixelsst(iaa.Invert(0.25, per_channel=True)), # invert color channelsst(iaa.Add((-10, 10), per_channel=0.5)), # change brightness of images (by -10 to 10 of original value)st(iaa.Multiply((0.5, 1.5), per_channel=0.5)), # change brightness of images (50-150% of original value)st(iaa.ContrastNormalization((0.5, 2.0), per_channel=0.5)), # improve or worsen the contrastst(iaa.Affine(scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, # scale images to 80-120% of their size, individually per axistranslate_px={"x": (-16, 16), "y": (-16, 16)}, # translate by -16 to +16 pixels (per axis)rotate=(-45, 45), # rotate by -45 to +45 degreesshear=(-16, 16), # shear by -16 to +16 degreesorder=ia.ALL, # use any of scikit-image's interpolation methodscval=(0, 255), # if mode is constant, use a cval between 0 and 255mode=ia.ALL # use any of scikit-image's warping modes (see 2nd image from the top for examples))),st(iaa.ElasticTransformation(alpha=(0.5, 3.5), sigma=0.25)) # apply elastic transformations with random strengths],random_order=True # do all of the above in random order
)images_aug = seq.augment_images(images)
seq.show_grid(images[0], rows=8, cols=8)

 

这篇关于imgaug数据增强实例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777871

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat