Python-sklearn-LinearRegression

2024-03-05 20:04

本文主要是介绍Python-sklearn-LinearRegression,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 手动实现/使用sklearn实现线性回归训练

1.1 单特征线性回归(One Feature)

1.2 多特征线性回归(Multiple Features)

1.3 多项式线性回归(Polynomial)


1 手动实现/使用sklearn实现线性回归训练

1.1 单特征线性回归(One Feature)

假设函数(One feature):

h(x^{i}) = w * x^{i} + b

损失函数(平方差损失MSE):

J(w, b) = \frac{1}{2m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})^{2}

优化器(梯度下降Gradient descent):

w: = w - \alpha \frac{\partial }{\partial w}J(w, b) = w - \alpha \frac{1}{m}\sum_{i=1}^{m}[(h(x^{i}) - y^{i}) * x^{i}]

b: = b - \alpha \frac{\partial }{\partial b}J(w, b) = b - \alpha \frac{1}{m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})

"""
@Title: linear_regression_with_one_feature
@Time: 2024/2/29
@Author: Michael Jie
"""import randomimport numpy as np
from sklearn.linear_model import LinearRegressionprint("--------------------手动实现LinearRegression--------------------")
# 数据集,y = 2.7 * x + 1.9
x = np.random.uniform(-3, 3, (100, 1))
y = 2.7 * x + 1.9 + np.random.normal(0, 0.5, (100, 1))
m = len(x)# 初始化训练参数
w, b = random.random(), random.random()
# 定义最小损失,学习率,最大训练轮次
epsilon, alpha, max_iter = 1e-4, 1e-2, 1e4# 训练
num = 0  # 训练轮次
j_init = 0  # 用于计算两次训练损失的差值
while True:# 假设函数,单特征线性回归h = w * x + b# 损失,平方差损失函数j = 1 / (2 * m) * np.sum((h - y) ** 2)if abs(j - j_init) < epsilon or num > max_iter:break# 优化器,梯度下降w -= alpha * (1 / m * np.sum((h - y) * x))b -= alpha * (1 / m * np.sum(h - y))num += 1j_init = jif num % 100 == 0:print("第{num}次训练,损失为:{j}".format(num=num, j=j))
print("训练后参数为:({w}, {b})".format(w=w, b=b))
# 预测
print("输入10的预测值为:{y}".format(y=w * 10 + b))print("--------------------使用sklearn实现LinearRegression--------------------")
linear = LinearRegression()
linear.fit(x, y)
print("训练后参数为:({w}, {b})".format(w=linear.coef_, b=linear.intercept_))
print("输入10的预测值为:{y}".format(y=linear.predict(np.array([[10]]))))"""
--------------------手动实现LinearRegression--------------------
第100次训练,损失为:0.24785011069810353
第200次训练,损失为:0.12133612402719189
训练后参数为:(2.6975988345352375, 1.8337117307000714)
输入10的预测值为:28.809700076052447
--------------------使用sklearn实现LinearRegression--------------------
训练后参数为:([[2.68709722]], [1.93437403])
输入10的预测值为:[[28.80534627]]
"""

1.2 多特征线性回归(Multiple Features)

假设函数(Multiple Features):

h(x) = w_{1} * x_{1} + w_{2} * x_{2} + ... + w_{n} * x_{n} + b = w^{T} * x + b

损失函数(平方差损失MSE):

J(w_{1},w_{2},...,w_{n}, b) = \frac{1}{2m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})^{2}

优化器(梯度下降Gradient descent):

w_{j} := w_{j} - \alpha \frac{\partial }{\partial w_{j}}J(w, b) = w_{j} - \alpha \frac{1}{m}\sum_{i=1}^{m}[(h(x^{i}) - y^{i}) * x_{j}^{i}]

b: = b - \alpha \frac{\partial }{\partial b}J(w, b) = b - \alpha \frac{1}{m}\sum_{i=1}^{m}(h(x^{i}) - y^{i})

"""
@Title: linear_regression_with_multiple_features
@Time: 2024/2/29
@Author: Michael Jie
"""import randomimport numpy as np
from sklearn.linear_model import LinearRegressionprint("--------------------手动实现LinearRegression--------------------")
# 数据集,y = 2.1 * x1 + 1.7 * x2 + 4.4
x = np.random.uniform(-3, 3, (100, 2))
y = np.dot(x, np.array([[2.1, 1.7]]).T) + 4.4 + np.random.normal(0, 0.5, (100, 1))
m = len(x)# 初始化训练参数
w, b = [[random.random(), random.random()]], random.random()
w = np.array(w)
# 定义最小损失,学习率,最大训练轮次
epsilon, alpha, max_iter = 1e-4, 1e-3, 1e4# 训练
num = 0  # 训练轮次
j_init = 0  # 用于计算两次训练损失的差值
while True:# 假设函数,单特征线性回归h = np.dot(x, w.T) + b# 损失,平方差损失函数j = 1 / (2 * m) * np.sum((h - y) ** 2)if abs(j - j_init) < epsilon or num > max_iter:break# 优化器,梯度下降w -= alpha * (1 / m * np.sum((h - y) * x))b -= alpha * (1 / m * np.sum(h - y))num += 1j_init = jif num % 100 == 0:print("第{num}次训练,损失为:{j}".format(num=num, j=j))
print("训练后参数为:({w}, {b})".format(w=w, b=b))
# 预测
print("输入(10, 20)的预测值为:{y}".format(y=np.dot(np.array([[10, 20]]), w.T) + b))print("--------------------使用sklearn实现LinearRegression--------------------")
linear = LinearRegression()
linear.fit(x, y)
print("训练后参数为:({w}, {b})".format(w=linear.coef_, b=linear.intercept_))
print("输入(10, 20)的预测值为:{y}".format(y=linear.predict(np.array([[10, 20]]))))"""
--------------------手动实现LinearRegression--------------------
第100次训练,损失为:6.917612630867695
第200次训练,损失为:5.128139537455417
...
第2300次训练,损失为:0.2550961384480396
第2400次训练,损失为:0.2423823553289109
训练后参数为:([[1.92022977 1.85815836]], 4.258528651534591)
输入(10, 20)的预测值为:[[60.62399361]]
--------------------使用sklearn实现LinearRegression--------------------
训练后参数为:([[2.09568973 1.68056098]], [4.45455187])
输入(10, 20)的预测值为:[[59.02266883]]
"""

1.3 多项式线性回归(Polynomial)

"""
@Title: linear_regression_with_polynomial
@Time: 2024/2/29 19:41
@Author: Michael
"""import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures# 数据集,y = 1.4 * x ** 2 - 3.1 * x + 2.6
x = np.random.uniform(-3, 3, (100, 1))
y = 1.4 * x ** 2 - 3.1 * x + 2.6 + np.random.normal(0, 0.5, (100, 1))# 预处理数据集,将一元二次函数转化成三元一次函数,然后使用线性回归训练
poly = PolynomialFeatures(degree=2)
poly.fit(x)
x = poly.transform(x)
# 手动实现预处理
degree = np.array([[0, 1, 2]])
# x = x ** degree# 回归训练
linear = LinearRegression()
linear.fit(x, y)
print("训练后参数为:({w}, {b})".format(w=linear.coef_, b=linear.intercept_))
print("输入10的预测值为:{y}".format(y=linear.predict(np.array([[1, 10, 100]]))))"""
训练后参数为:([[ 0.         -3.1180901   1.40622675]], [2.62986504])
输入10的预测值为:[[112.07163862]]
"""

这篇关于Python-sklearn-LinearRegression的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/777652

相关文章

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.