few-shot learning(少样本学习/小样本学习) one-shot learning(一样本学习) C-way K-shot 问题

2024-03-05 14:20

本文主要是介绍few-shot learning(少样本学习/小样本学习) one-shot learning(一样本学习) C-way K-shot 问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

few-shot learning(少样本学习/小样本学习)       

       人类非常擅长通过极少量的样本识别一个新物体,比如小孩子只需要书中的一些图片就可以认识什么是“斑马”,什么是“犀牛”。在人类的快速学习能力的启发下,研究人员希望机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习,这就是 Few-shot Learning 要解决的问题

      Few-shot Learning 是 Meta Learning 在监督学习领域的应用

 

        以“人类从未见到过澳大利亚的鸭嘴兽,给我们一张鸭嘴兽的照片后,人类就认识了!”这句话为例。鸭嘴兽就代表未知的事物(new class),而我们生活中已经见到过的鸭子、狸猫、鱼等动物就代表知识的先验,我们把这种知识的先验称为 元知识 (meta Knowledge),我们大脑的能快速的把从未见过的鸭嘴兽与这些元知识快速的类比(可能还存在一些其他脑力活动,如视觉提取物体的特征),得出结论:这个长得像鸭子嘴,还能像鱼一样游泳、身形扁扁的新动物就是鸭嘴兽。

经过上图,再加上下面的过程的文字介绍,我们应该可以理解小样本学习的过程了。

 

那么,小样本学习如何训练,就是这个 \mathcal{D}_{base} 怎么用呢?

有两种训练方式:

1. 就是像 《Matching Nets》《RelationNet》《Prototypical Nets》《Meta-SGD》等等那样,训练测试保持统一,训练过程模拟测试过程。即训练时候,以 MatchNets,5way-1shot为例,每次也是随机采5个类,每类中1张图像做support sample,剩余的 99 张图像中可采15张做query samples ,query 与 support 通过 cosine distance 分类并计算 loss。这属于一种元学习的训练策略,往往用于 5-way 的设置

2. 普通分类训练方式,\mathcal{D}_{base} 直接用普通分类方式来训练一个鲁棒的特征提取器,\mathcal{D}_{novel}  可以直接通过 SVM,Euclid ,权重迁移的方式分出 query set。

 

C-way K-shot 问题

        few-shot 的训练集中包含了很多的类别,每个类别中有多个样本。在训练阶段,会在训练集中随机抽取 C 个类别,每个类别 K 个样本(总共 CK 个数据),构建一个 meta-task,作为模型的支撑集(support set)输入;再从这 C 个类中剩余的数据中抽取一批(batch)样本作为模型的预测对象(batch set)。即要求模型从 C*K 个数据中学会如何区分这 C 个类别,这样的任务被称为 C-way K-shot 问题。

 

     这里的少样本学习的研究领域与迁移学习有一大部分交集部分,即在源域有足够多样本,而在目标域样本不足。

 

     最近几年 Few-shot Learning 在图像领域的进展领先于在自然语言处理领域

 

 

One-shot learning 一样本学习

少样本学习,机器学习模型在学习了一定类别的大量数据后,对于新的类别,只需要少量的样本就能快速学习,对应的有one-shot learning, 一样本学习,也算样本少到为一的情况下的一种few-shot learning,
 

这篇关于few-shot learning(少样本学习/小样本学习) one-shot learning(一样本学习) C-way K-shot 问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776796

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符