朴素贝叶斯(离散型+连续型)

2024-03-05 10:48

本文主要是介绍朴素贝叶斯(离散型+连续型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

讲道理上次写完离散性朴素贝叶斯的实现,这次得写连续型的了,考虑到还有离散性+连续型(考虑到我懒),即数据集里的特征既有离散的特征又有连续的特征这样,就一并一起洗写了吧o(* ̄▽ ̄*)ブ


上次讲到了朴素贝叶斯的思想,本质上就是假设数据特征的条件概率是无关的,然后我们通过正态分布去假设每个特征条件概率的分布;

于是乎对于连续型的特征我们可以通过它们在训练集上的均值和方差去估算新来样本的条件概率


然后就和离散性一样啦~


import numpy as np
import mathpi = math.piclass NaiveBayesClassifier(object):def __init__(self):self.x = self.y = []self.feat_dics = self.label_dic = self.dic_label = self.pri = Noneself.con = []self.is_continue = self.cont_con =  Nonedef pre(self, x, y):xt = map(list, zip(*x))features = [set(feat) for feat in xt]self.feat_dics = [{_l: i for i, _l in enumerate(feats)}for i, feats in enumerate(features)]x = 

这篇关于朴素贝叶斯(离散型+连续型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776266

相关文章

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证

回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证 目录 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现基于贝叶斯算法优化X

处理特征向量和离散特征

在最新的腾讯的社交广告大赛中,数据如下,如何处理这种向量的特征 比如intersets1,interests2.... LBS,950,age,4,carrier,1,consumptionAbility,2,ct,3 1,education,7,gender,2,interest1,93 70 77 86 109 47 75 69 45 8 29 49 83 6 46 36

特征离散和特征选择

连续特征的离散化:在什么情况下将连续的特征离散化之后可以获得更好的效果? Q:CTR预估,发现CTR预估一般都是用LR,而且特征都是离散的。为什么一定要用离散特征呢?这样做的好处在哪里? A: 在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点: 0、 离散特征的增加和减少都很容易,易于模型的快速迭代。(离散

【机器学习】朴素贝叶斯

3. 朴素贝叶斯 素贝叶斯算法(Naive Bayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。 优点: 速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝

【HDU】3729 I'm Telling the Truth 离散+最大流

传送门:【HDU】3729 I'm Telling the Truth 题目分析:我看这么大的数据范围,如果普通二分肯定要超时的啊。。。然后就敲了一个离散化+最大流了。。。 但是我网上看他们的题解,都是裸裸的开一个100万的数组啊!!!还比我离散的网络流还快啊啊啊!!于是我就测一次给的区间有多大(如果超出一定范围就拿一个变量除以0让报RE),第一次10000没事,然后1000。。还是没事

【HDU】5958 New Signal Decomposition【离散对数下的FFT】

题目链接:【HDU】5958 New Signal Decomposition 在此先感谢小q对我的指导,没有q老师的帮助,估计永远也做不出来了。 首先我们考虑对这个式子做离散对数。令 g g为pp的某个原根,则有: bi=∑p−1j=0aj⋅r(i,j) \quad b_i=\sum_{j=0}^{p-1}a_j\cdot r(i,j) bi=∑p−1j=0aj⋅2sin32πi⋅j

机器学习项目——基于机器学习(决策树 随机森林 朴素贝叶斯 SVM KNN XGBoost)的帕金森脑电特征识别研究(代码/报告材料)

完整的论文代码见文章末尾 以下为核心内容和部分结果 问题背景 帕金森病(Parkinson’s Disease, PD)是一种常见的神经退行性疾病,其主要特征是中枢神经系统的多巴胺能神经元逐渐丧失,导致患者出现运动障碍、震颤、僵硬等症状。然而,除运动症状外,帕金森病患者还常常伴有一系列非运动症状,其中睡眠障碍是最为显著的非运动症状之一。 脑电图(Electroencephalogram, E

【自动驾驶】控制算法(七)离散规划轨迹的误差计算

写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作,荣幸在CSDN首发🐒 若您觉得内容有价值,还请评论告知一声,以便更多人受益。 转载请注明出处,尊重原创,从我做起。 👍 点赞、评论、收藏,三连走一波,让我们一起养成好习惯😜 在这里,您将