XGB-17:模型截距

2024-03-05 10:28
文章标签 模型 17 截距 xgb

本文主要是介绍XGB-17:模型截距,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在 XGBoost 中,模型截距(也称为基本分数)是一个值,表示在考虑任何特征之前模型的起始预测。它本质上是处理回归任务时训练数据的平均目标值,或者是分类任务的赔率对数。

在 XGBoost 中,每个叶子节点都会输出一个分数,而模型的最终预测是将所有叶子节点的分数相加得到的。这些分数在树的训练过程中被学习得到,但当没有任何输入特征时,模型需要一个基准值,这就是截距的作用。

从2.0.0版本开始,XGBoost支持在训练时根据目标值自动估计模型截距(名为base_score)。该行为可以通过将base_score设置为常数来控制。以下代码段禁用了自动估计:

import xgboost as xgbreg = xgb.XGBRegressor()
reg.set_params(base_score=0.5)

此外,这里的0.5代表应用逆链接函数后的值。

除了base_score之外,用户还可以通过数据字段base_margin提供全局偏置,这个字段是一个向量或矩阵,取决于任务的类型。对于多输出和多分类任务,base_margin是一个大小为(n_samples, n_targets)(n_samples, n_classes)的矩阵。

import xgboost as xgb
from sklearn.datasets import make_regressionX, y = make_regression()reg = xgb.XGBRegressor()
reg.fit(X, y)# Request for raw prediction
m = reg.predict(X, output_margin=True)reg_1 = xgb.XGBRegressor()
# Feed the prediction into the next model
reg_1.fit(X, y, base_margin=m)
reg_1.predict(X, base_margin=m)

它为每个样本指定了偏置,并可以用于将XGBoost模型堆叠在其他模型之上,有关从预测中提升的示例,请参见Demo。当指定了base_margin时,它会自动覆盖base_score参数。如果正在堆叠XGBoost模型,那么使用应该是相对直接的,前面的模型提供原始预测,而新模型使用预测作为偏置。对于更自定义的输入,用户需要额外注意链接函数。设F为模型,g为链接函数,由于当样本特定的base_margin可用时base_score会被覆盖:

g ( E [ y i ] ) = F ( x i ) g(E[y_i]) = F(x_i) g(E[yi])=F(xi)

当提供基线偏置(base margin)b时,它会加到模型的原始输出F上。

g ( E [ y i ] ) = F ( x i ) + b i g(E[y_i]) = F(x_i) + b_i g(E[yi])=F(xi)+bi

并且最终模型的输出是:

g − 1 ( F ( x i ) + b i ) g^{-1}(F(x_i) + b_i) g1(F(xi)+bi)

以使用伽马偏差目标函数reg:gamma为例,该函数具有对数链接函数,因此:

ln ⁡ ( E [ y i ] ) = F ( x i ) + b i E [ y i ] = exp ⁡ ( F ( x i ) + b i ) \begin{split}\ln{(E[y_i])} = F(x_i) + b_i \\ E[y_i] = \exp{(F(x_i) + b_i)}\end{split} ln(E[yi])=F(xi)+biE[yi]=exp(F(xi)+bi)

因此,如果正在输入来自具有相应目标函数的模型(如GLM)的输出,请确保这些输出尚未通过逆链接函数(激活函数)进行转换。

在估计之后,可以通过save_config()访问base_score(截距)。与base_margin不同,返回的值代表应用逆链接函数后的值。以逻辑回归和逻辑链接函数为例,给定base_score为0.5,

g ( i n t e r c e p t ) = l o g i t ( 0.5 ) = 0 g(intercept) = logit(0.5) = 0 g(intercept)=logit(0.5)=0会被加到模型的原始输出上:

E [ y i ] = g − 1 ( F ( x i ) + g ( i n t e r c e p t ) ) E[y_i] = g^{-1}{(F(x_i) + g(intercept))} E[yi]=g1(F(xi)+g(intercept))

而0.5等同于 b a s e _ s c o r e = g − 1 ( 0 ) = 0.5 base\_score = g^{-1}(0) = 0.5 base_score=g1(0)=0.5 。如果忽略模型并只考虑截距,这将更加直观,截距是在模型拟合之前估计的:

E [ y ] = g − 1 ( g ( i n t e r c e p t ) ) E [ y ] = i n t e r c e p t \begin{split}E[y] = g^{-1}{(g(intercept))} \\ E[y] = intercept\end{split} E[y]=g1(g(intercept))E[y]=intercept

对于一些目标函数,如平均绝对误差(MAE),存在接近的解,而对于其他目标函数,则是使用一步牛顿方法进行估计。

参考

  • https://xgboost.readthedocs.io/en/latest/python/examples/boost_from_prediction.html#sphx-glr-python-examples-boost-from-prediction-py
  • https://xgboost.readthedocs.io/en/latest/tutorials/intercept.html

这篇关于XGB-17:模型截距的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776214

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号