利用matlab进行多项式求根——符号解

2024-03-05 09:50

本文主要是介绍利用matlab进行多项式求根——符号解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:对于一个方程,比如: a x 2 + b x + c = 0 ax^2+bx+c=0 ax2+bx+c=0,我们想要求出关于x的表达式(求根)。

如果a,b,c是已知的,或者说是某个确定的数值,那么我们就可以直接用roots函数进行求根——数值解

p=[1 2 1]
roots(p)

返回结果是:

ans =-1-1

显然这里的a,b,c是未知的,我们想要求出x的表达式——符号解。那么我么可以用solve函数来实现:

syms a b c x                          % 声明参数
eqn = a*x^2 + b*x + c == 0;    
solx = solve(eqn, x)               

返回结果是:

solx =-(b + (b^2 - 4*a*c)^(1/2))/(2*a)-(b - (b^2 - 4*a*c)^(1/2))/(2*a)

其中,solve(eqn,x)表示对等式eqn关于x的求解(同样地,也可以求解关于a或b或c的解)。eqn可以是一个等式,也可以是一个表达式,如果是一个表达式,则默认是对eqn=0求解。

需要注意的是,solve函数并不一定总是返回方程的所有解,比如:
syms x
solx = solve(cos(x) == -sin(x), x)

返回结果是:

solx =
-pi/4
如果我们需要返回所有可能的解,可以设置“ReturnConditions"选项为true。如下所示:
[solx, param, cond] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)

返回结果是:

solx =
pi*k - pi/4
param =
k
cond =
in(k, 'integer')

如上所示,返回值有三个参数,分别是解、解的参数、解的条件。
solx =pi*k - pi/4
param =k
cond =in(k, ‘integer’)

进一步深入:对于上述有多个解的情况,如何返回在指定区间内或满足特定条件的解呢?
  • 第一步:求出方程的所有可能解(带有参数param和条件cond),即方程的通解。例如:方程 c o s ( x ) = − s i n ( x ) cos(x) =-sin(x) cos(x)=sin(x),通解为: s o l x = k π − π 4 solx =k\pi - \frac {\pi} 4 solx=kπ4π(其中k为参数,k为整数)。

matlab实现:

syms x
[solx, param, cond] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)
  • 第二步:求出在指定区间内或满足特定条件的解对应参数的所有可能取值。例如:对于方程 c o s ( x ) = − s i n ( x ) cos(x) =-sin(x) cos(x)=sin(x),求出在区间 ( − 2 π , 2 π ) (-2\pi,2\pi) (2π,2π)内的解,于是k的所有可能取值等价于求不等式 − 2 π < k π − π 4 < 2 π -2\pi<k \pi - \frac {\pi} 4<2\pi 2π<kπ4π<2π,即 k = − 1 , 0 , 1 , 2 k=-1,0,1,2 k=1012

matlab实现:

assume(cond)
solk = solve(-2*pi<solx, solx<2*pi, param)
  • 第三步:把参数的所有可能取值代入方程通解的表示式中,即得到在指定区间内或满足特定条件的解。把 k = − 1 , 0 , 1 , 2 k=-1,0,1,2 k=1012代入到 s o l x = k π − π 4 solx =k\pi - \frac {\pi} 4 solx=kπ4π,于是满足条件的解为: x v a l u e s = − 5 π 4 , − π 4 , 3 π 4 , 7 π 4 xvalues=-\frac {5\pi} 4,-\frac {\pi} 4,\frac {3\pi} 4,\frac {7\pi} 4 xvalues=45π,4π,43π,47π

matlab实现:

xvalues = subs(solx, solk)
xvalues = vpa(xvalues)         % 把符号解转换成数字解
解的可视化

绘制 c o s ( x ) = = − s i n ( x ) cos(x) == -sin(x) cos(x)==sin(x)的解:分别绘制cos(x)和 -sin(x),再标记出两个曲线的交点。

matlab实现:

fplot(cos(x))
hold on
grid on
fplot(-sin(x))
title('Both sides of equation cos(x) = -sin(x)')
legend('cos(x)','-sin(x)','Location','best','AutoUpdate','off')yvalues = cos(xvalues)          % 计算交点的纵坐标scatter(xvalues, yvalues)        % 标出交点的位置

在这里插入图片描述

这篇关于利用matlab进行多项式求根——符号解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/776107

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建