CMU 10-414/714: Deep Learning Systems --hw0

2024-03-05 05:04
文章标签 deep learning 714 systems cmu 414 hw0

本文主要是介绍CMU 10-414/714: Deep Learning Systems --hw0,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

hw0

宏观上的步骤:
在这里插入图片描述

  1. softmax loss: 实现softmax loss代码
    • 概念
      • softmax就是将结果映射到0~1之间,且所有结果相加为1(概率形式)
      • cross-entropy loss就是计算 p ( x ) log ⁡ q ( x ) p(x)\log {q(x)} p(x)logq(x),此值可用于衡量实际输出与期望输出的距离,进而衡量预测模型与真实模型之间的差距,值越大说明越不准确。(p(x)为真实值,通常为0或1;q(x)为推算概率,在0~1之间)
      • Needle中的softmax loss更简单一些,就是计算 − log ⁡ p (  label  = y ) -\log p(\text { label }=y) logp( label =y),即在输出中,让正确类别的概率值取负log
    • 公式:
      • softmax:
        softmax ⁡ ( y i ) = y i ′ = e y i ∑ j = 1 n e y i , ∑ j = 1 n y i ′ = 1 \operatorname{softmax}\left(\mathrm{y}_i\right)=\mathrm{y}_i^{\prime}=\frac{e^{\mathrm{y}_i}}{\sum_{j=1}^n e^{\mathrm{y}_i}},\sum_{j=1}^n \mathrm{y}_i^{\prime}=1 softmax(yi)=yi=j=1neyieyi,j=1nyi=1
        其中,神经网络的原始输出为 y 1 , y 2 , . . . , y n

这篇关于CMU 10-414/714: Deep Learning Systems --hw0的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/775401

相关文章

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

LeetCode 第414场周赛个人题解

目录 Q1. 将日期转换为二进制表示 原题链接 思路分析 AC代码 Q2. 范围内整数的最大得分 原题链接 思路分析 AC代码 Q3. 到达数组末尾的最大得分 原题链接 思路分析 AC代码 Q4. 吃掉所有兵需要的最多移动次数 原题链接 思路分析 AC代码 Q1. 将日期转换为二进制表示 原题链接 Q1. 将日期转换为二进制表示 思路分析

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

Deep Ocr

1.圈出内容,文本那里要有内容.然后你保存,并'导出数据集'. 2.找出deep_ocr_recognition_training_workflow.hdev 文件.修改“DatasetFilename := 'Test.hdict'” 310行 write_deep_ocr (DeepOcrHandle, BestModelDeepOCRFilename) 3.推理test.hdev

CMU 10423 Generative AI:HW0

由于找不到S24版数据集,所以HW0用的F24版的。 项目地址见:https://github.com/YM2025/CMU_10423_2024S 文章目录 0 作业概述1 阅读(3分)2 图像分类(43分)2.1 (3 分)【完成】2.2 (3 分)【完成】2.3 (4 分)【完成】2.4 (4 分)【完成】2.5【完成】2.5.a (3 分)2.5.b (2 分) 2.6 (2 分)

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

One-Shot Imitation Learning

发表时间:NIPS2017 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=4557560538297540609&noteId=2424799047081637376 作者单位:Berkeley AI Research Lab, Work done while at OpenAI Yan Duan†§ , Marcin Andrychow