Python 全栈系列231 以数据处理为核心的微服务思考

2024-03-05 00:20

本文主要是介绍Python 全栈系列231 以数据处理为核心的微服务思考,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明

最初我是专注与做数据分析和建模的,通俗点说也就是pandas和sklearn。照理来说,分析和建模作为一种分工,本身是可以独立于架构的设计和使用的。其实也就是从20年之后,我才开始花比较多的时间研究这一块。

回想了一下原因:

  • 1 交付价值。以模型为例,输入原始数据,经过一系列复杂的变换,给到处理结果。按照传统的部署方法,或者是交给其他团队,那么耗费的时间和资源是非常多。这就影响到了我们工作所能交付的价值。现在的大语言模型通常提供gradio或者streamlit这样前端的使用,其实也就是一种增强价值交付的手段。而且本身封装微服务是一种很简单的方法,文章后面会例子。
  • 2 提高效率。仅从数据IO的角度,我觉得我没办法很好的在多种不同的数据库风格间切换。虽然python提供了大部分主流数据库的连接包,但是风格和语法还是有较大不同的,适应起来比较费时费力。对数据库本身的功能来说,其实本身的抽象功能是比较固定的:列出库表信息、索引的建立、数据的增删改查等。通过微服务提供统一的接口,屏蔽掉不同数据库的操作差异,可以极大的提升效率。
  • 3 提升计算能力。工业化的数据处理必然要通过分布式来增强计算能力,微服务本身就可以很好的支持横向的计算拓展。

本篇介绍微服务的概念(优缺点)、微服务的部署基础(Docker)、Python微服务构造样例(Tornado)以及我的微服务使用现状。

内容

1 微服务概念

在我看来,微服务主要针对的是单体应用。

微服务(Microservice)这个概念是2012年出现的,作为加快Web和移动应用程序开发进程的一种方法,2014年开始受到各方的关注,而2015年,可以说是微服务的元年;(这段话引用的,关于时间差不多是这样)

最早的时候,通常说“一个jar包打天下”,将所有的功能封装在一起进行发布。这样容易产生三类问题:

  • 1 耦合性高,某个地方出问题,很可能影响其他业务模块的使用
  • 2 代码管理成本高,项目沉重,并会随着需求的增加越来越重
  • 3 随着访问量的增多,这种架构的工程并发力不够

微服务出现后:系统的功能是松耦合的,一方面系统更加稳定了,另外一块是便于分工。

系统的稳定性来自于在项目的功能分解:将具体的功能切分为一个个的微服务,本身是分治的思想。另外,微服务本身也是独立部署的,某个微服务的bug可能不会导致系统的全面瘫痪。

便于分工则体现在,API接口的规范是一致的,每个人很清楚知道自己的IO格式。在微服务内部,你使用了什么语言或者是依赖是灵活的,只要在测试时你的并发能力足够,结果准确就行。

微服务的代价主要有两点:

  • 1 管理变得复杂了。都使用微服务后,管理大量的微服务需要额外的开销。
  • 2 数据的IO转换代价。以json规范为例,在不同的微服务间流转必然要进行序列化和反序列化,这是一笔不小的开销。

容器技术的出现降低了部署和管理难度,而硬件的不断进步使得数据IO的代价变得可以接受。这也是“人生苦短,我用Python”的精髓:用更多的机器时间来解放人的时间。

2 微服务的部署基础

Docker是一个开源的应用容器引擎,是Google公司推出的一个开源项目。它可以将应用和环境打包成一个容器,随后可以在任何地方运行。Docker容器镜像不仅可以在开发环境中打包应用,还可以在测试和生产部署阶段中使用。总之,Docker提供了一种快速单一的解决方案,解决了环境问题。

关于Docker也不多介绍了,可以简单理解为效率很高的虚拟机。从实际的使用上,Docker带来的好处是环境搭建和分布式部署非常方便。唯一可能需要注意的是,最好使用Linux系统服务器。

Docker有镜像仓库,一些云服务商也有镜像仓库(比如阿里云),当然也可以在自己的分布式环境下自建镜像仓库,而且一般都有很大的带宽,可以很快的在不同的主机上拉取。这些镜像仓库提供了许多半成品和成品,可以以类似git的方式进行增改和再提交,这就让定制自己的系统变的很简单。

在AI方面,通常安装CUDA环境是很烦的,有了Docker之后,宿主机只要安装好驱动,然后将显卡挂载到镜像启动,容器中就可以使用了,这个解决系统环境配置的一个大问题。

至于端口映射,让各个子分布系统之间互联互通的问题可以使用一些类似Nginx之类的工具完成。

在效率方面,官方的说法是一台机器可以启动多达上千个容器(肯定超过物理硬件的能力了)
在这里插入图片描述
Docker的容器本身还有很多特性,比如限制CPU,内存等,这有助于进一步保证整体宿主机的稳定性。

3 Python微服务构造样例

我简单的把微服务的应用分为后端和前端,就python系而言Tornado适合后端,Flask适合前端。当然还有新出的FastAPI之类的,不过我觉得用不上了。

在这里插入图片描述
在这里插入图片描述
Tornado和Flask我都用,具体的参数比较就不说了,总而言之,Tornado用于纯后端非常方便(对象应用),Flask在前端应用上非常方便(蓝图模式以及各种钩子)。

可以搜索镜像,一般jupyter的镜像包装的比较全

docker pull jupyter/datascience-notebook

基于镜像创建容器,同时将宿主机的12345端口给到容器的8000端口,可以看到容器里已经有包了。

└─ $ docker run -it -p 12345:8000 jupyter/datascience-notebook bash
(base) jovyan@f7b727336b27:~$ ls
work
(base) jovyan@f7b727336b27:~$ pip3 install tornado
Requirement already satisfied: tornado in /opt/conda/lib/python3.11/site-packages (6.3.3)

以下粘贴两个py文件内容到容器里(使用vi 创建对应的文件再粘贴,或者使用docker cp 考入)

server_funcs.py

import json
from json import JSONEncoder
class MyEncoder(JSONEncoder):def default(self, obj):if isinstance(obj, np.integer):return int(obj)elif isinstance(obj, np.floating):return float(obj)elif isinstance(obj, np.ndarray):return obj.tolist()if isinstance(obj, datetime):return obj.__str__()if isinstance(obj, dd.timedelta):return obj.__str__()else:return super(MyEncoder, self).default(obj)# 【创建tornado所需问文件夹】
import os 
# 如果路径不存在则创建
def create_folder_if_notexist(somepath):if not os.path.exists(somepath):os.makedirs(somepath)return Truem_static = os.path.join(os.getcwd(),'m_static')
m_template = os.path.join(os.getcwd(),'m_template')create_folder_if_notexist(m_static)
create_folder_if_notexist(m_template)settings = {
'static_path':m_static,
'template_path':m_template
}

server.py

from server_funcs import * 
import tornado.httpserver  # http服务器
import tornado.ioloop  # ?
import tornado.options  # 指定服务端口和路径解析
import tornado.web  # web模块
from tornado.options import define, options
import os.path  # 获取和生成template文件路径app_list = []IndexHandler_path = r'/'
class IndexHandler(tornado.web.RequestHandler):def get(self):self.write('【GET】This is Website for Internal API System')self.write('Please Refer to API document')print('Get got a request test')# print(buffer_dict)def post(self):request_body = self.request.bodyprint('Trying Decode Json')some_dict = json.loads(request_body)print(some_dict)msg_dict = {}msg_dict['info'] = '【POST】This is Website for Internal API System'msg_dict['input_dict'] = some_dictself.write(json.dumps(msg_dict))print('Post got a request test')
IndexHandler_tuple = (IndexHandler_path,IndexHandler)
app_list.append(IndexHandler_tuple)if __name__ == '__main__':tornado.options.parse_command_line()apps = tornado.web.Application(app_list, **settings)http_server = tornado.httpserver.HTTPServer(apps)define('port', default=8000, help='run on the given port', type=int)http_server.listen(options.port)# 单核# 多核打开注释# 0 是全部核# http_server.start(num_processes=10) # tornado将按照cpu核数来fork进程# ---启动print('Server Started')tornado.ioloop.IOLoop.instance().start()

此时文件目录为

(base) jovyan@526ad528a653:~$ ls
server_funcs.py  server.py  work
# 启动服务
(base) jovyan@526ad528a653:~$ python3 server.py
Server Started

执行测试

import requests as req # get请求
res = req.get('http://127.0.0.1:12345/').text
In [4]: res
Out[4]: '【GET】This is Website for Internal API SystemPlease Refer to API document'
# post请求
some_dict = {'test':123}
res = req.post('http://127.0.0.1:12345/', json = some_dict).json()
In [7]: res
Out[7]:
{'info': '【POST】This is Website for Internal API System','input_dict': {'test': 123}}

将修改过的容器提交

docker commit 526ad528a653 YOUR_IMAGE:V
docker push YOUR_IMAGE:V

如果要进入长期服务,直接采取服务态方式执行即可

docker run -d \--restart=always \-p HOST_PORT:CONTAINER_PORT \YOUR_IMAGE:V \python3 server.py

4 微服务使用现状

我陆续构造了几十个微服务,主要分为:

  • 1 数据库类
  • 2 数据库代理类
  • 3 功能类
  • 4 辅助类

4.1 数据库类

Mysql、Mongo、Redis、ES、Milvus、Neo4j

其中Mongo是主库,构造了单机版和集群。

Redis作为内存库,提供KV缓存和简单消息队列(RedisStream)

ES作为全文搜索库。

Milvus是向量数据库。

Mysql很少用。

Neo4j 以前用的很多,以后肯定也会用的很多,最近比较少用。

4.2 数据库代理类

MysqlAgent、MongoAgent、CypherAgent、RedisAgent、RedisOrMongo、GlobalBuffer

顾名思义,就是为了简化数据库操作的。

4.3 功能类

特定功能类:例如主体识别,以及其他的为业务服务的微服务。
通用功能类:GlobalFunc

4.4 辅助类

辅助类也不少,Jupyter, JupyterLab, GitLab, DrawIO、定时类、Nginx、镜像仓库、文件传输、发邮件、发短信、任务看板、在线笔记、还有负责传递命令、监控的,不过有些不完善,目前也没在用。

4.5 应用

基于这些微服务再开发一些对象,就可以和平时的开发代码结合在一起,方便的使用了。

需要特别注意的是缓存的使用与数据的分块。

要对应大量的请求,一定要使用消息队列和内存数据库。像Mongo这样的,我作为主库,很适合进行大批量的吞吐(以万级为单位);但是Mongo如果应对大量的零散请求很容易崩溃,这时候就需要和Redis配合。简单起见我使用Redis实现了KV和消息队列。

除此之外,数据库本身的分片分区和分块比较重要。这样才能比较好的利用分布式的微服务处理:例如根据分片方法,异步并发向多个分片发起查询,速度可以快很多。

5 总结

之前侧重在数据的IO、服务的并发响应以及复杂功能的实现方面。基本上架构方面不再是一个约束,只有在算法和规范上需要进一步完善。

架构方面还需要改进的微服务有两块:

  • 1 自动化运维。由于我的服务相对比较集中,所以可以自建一个微服务注册/监控/控制的服务。之前已经有过pilot了,所以应该没啥问题。
  • 2 分布式任务调度。使用flask aps + celery + rabbit_mq ,可以再做一个分布式的任务调度。

目前数据的存储和规范基本ok,复杂功能方法基本也ok,并发响应(缓存和队列)也基本ok,在加上自动化运维和分布式任务调度,整个系统就完整了。

这篇关于Python 全栈系列231 以数据处理为核心的微服务思考的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774742

相关文章

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数