CVPR 2022:微笑识别也带性别歧视?浙大武大联合蚂蚁Adobe搞了个公平性提升框架...

本文主要是介绍CVPR 2022:微笑识别也带性别歧视?浙大武大联合蚂蚁Adobe搞了个公平性提升框架...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:董小威
武汉大学

AI模型存在偏见怎么办?

近年来,AI在多个领域展现出卓越的性能,给人类生活带来便捷和改善。

与此同时,不少AI系统被发现存在对特定群体的偏见或者歧视现象。

犯罪预测系统COMPAS在美国被广泛使用,通过预测再次犯罪的可能性来指导判刑。

研究者发现,相比于白人,黑人被预测为高暴力犯罪风险的可能性竟然高77%。这里就存在一个严肃的问题:犯罪与否难道能由肤色来决定?

69601368e802f3ac9f68a5473a61eae7.png

我们经常使用的搜索引擎也普遍存在偏见。如果搜索“护士”的图片,返回的结果中大部分都是女性。

23e8bea3b86a90086345737528ca8fea.png

亚马逊的员工招聘系统,被曝出倾向于给男性打高分,给女性打低分。

0f1f9e6d4a7fb86578aab7fe41dafa80.png

为什么AI系统存在偏见?它是如何学会的?多半是数据教会了它。

例如,在亚马逊的雇员数据中,男性远多于女性,导致AI学到了性别和录用间的虚假关联,误以为男性更有资格被录用。

d187e8033e71a942599b2150a31b89bc.png

针对这一问题,研究者提出了多种公平性提升方案,但它们本质上都要修改已部署的深度学习模型。

“如果已部署上线的深度学习模型存在偏见,如何在不修改模型的情况下提升公平性呢?”浙江大学王志波教授提出了这个问题。

针对该问题,浙大王志波和任奎团队联合武汉大学、蚂蚁集团与Adobe公司,提出了一种基于对抗性扰动的深度学习模型公平性提升方案,在无须改变已部署模型的情况下提升系统的公平性。

该方案的基本思想是:通过自适应地对输入数据添加对抗性扰动,阻止模型提取出敏感属性相关信息,保留目标任务相关信息,从而使得模型公平地对待不同敏感属性的群体,给出公平的预测结果。

a5a38dee2989a29cca5287ddaa2d5bd0.png

公平性提升方案FAAP

FAAP框架包含已部署的模型扰动生成器判别器三个部分:

9c7d4e5ab8926a33b5d68830fee8e129.png

首先,用扰动生成器对图像添加对抗性扰动,扰动后的图像会输入到部署模型的特征提取器,获得图像的隐空间表示,并分别输入到标签预测器和判别器。

96260b8b36426eab7fb66a7599b2781e.png

接着衡量扰动后的图像中包含的敏感属性的信息,训练判别器从隐空间表示中预测敏感属性,并对判别器进行更新。

5968cc1ef1051d40a402415ee935d9d5.png

之后对扰动生成器进行更新,欺骗判别器,使扰动后的图像在隐空间表示中不包含敏感属性的信息,同时使标签预测器的预测结果准确。

7bdf4146ec2f77897f096ee395929f59.png

对以上步骤进行迭代,获得最终的扰动生成器,作为数据预处理单元,为已有的AI系统提升公平性。

6d04f28fbfbda704343b486287d15bc1.png

模型预测真的变公平了吗?

通过观察注意力显著图可以发现,有性别偏见的微笑识别模型,会关注于原始图像的头发区域,不可避免地使用性别相关特征进行预测。相比之下,该方案可以让模型更关注于图像嘴部区域,从而不受敏感属性的影响,做出公平的预测:

a718871530508cd5cee7d6861306c684.png

使用T-SNE处理模型特征空间的输出,可以发现,带有性别偏见的模型,在特征空间能分辨出原始图像中不同性别的样本,因而区别对待不同性别的人群。相比之下,该方案让具有不同敏感属性的样本在特征空间发生混淆,使得它们被模型公平对待:

5638f228be93297f942d7478121a7757.png

该项研究首次考虑在不改变深度学习模型的前提下提升公平性,提出的方案更贴合真实应用场景。

对于一般的部署模型,在基本不影响准确率的情况下,该方案可以大幅提升公平性,例如,在公平性指标DP和DEO上平均能够获得27.5%和66.1%的提升。

目前,该研究成果的相关论文“Fairness-aware Adversarial Perturbation Towards Bias Mitigation for Deployed Deep Models”已被CVPR 2022录用。

论文地址:

https://arxiv.org/abs/2203.01584

这篇关于CVPR 2022:微笑识别也带性别歧视?浙大武大联合蚂蚁Adobe搞了个公平性提升框架...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/774122

相关文章

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

Java 后端接口入参 - 联合前端VUE 使用AES完成入参出参加密解密

加密效果: 解密后的数据就是正常数据: 后端:使用的是spring-cloud框架,在gateway模块进行操作 <dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.0-jre</version></dependency> 编写一个AES加密

ZooKeeper 中的 Curator 框架解析

Apache ZooKeeper 是一个为分布式应用提供一致性服务的软件。它提供了诸如配置管理、分布式同步、组服务等功能。在使用 ZooKeeper 时,Curator 是一个非常流行的客户端库,它简化了 ZooKeeper 的使用,提供了高级的抽象和丰富的工具。本文将详细介绍 Curator 框架,包括它的设计哲学、核心组件以及如何使用 Curator 来简化 ZooKeeper 的操作。 1

java学习,进阶,提升

http://how2j.cn/k/hutool/hutool-brief/1930.html?p=73689

【Kubernetes】K8s 的安全框架和用户认证

K8s 的安全框架和用户认证 1.Kubernetes 的安全框架1.1 认证:Authentication1.2 鉴权:Authorization1.3 准入控制:Admission Control 2.Kubernetes 的用户认证2.1 Kubernetes 的用户认证方式2.2 配置 Kubernetes 集群使用密码认证 Kubernetes 作为一个分布式的虚拟

Spring Framework系统框架

序号表示的是学习顺序 IoC(控制反转)/DI(依赖注入): ioc:思想上是控制反转,spring提供了一个容器,称为IOC容器,用它来充当IOC思想中的外部。 我的理解就是spring把这些对象集中管理,放在容器中,这个容器就叫Ioc这些对象统称为Bean 用对象的时候不用new,直接外部提供(bean) 当外部的对象有关系的时候,IOC给它俩绑好(DI) DI和IO

Sentinel 高可用流量管理框架

Sentinel 是面向分布式服务架构的高可用流量防护组件,主要以流量为切入点,从限流、流量整形、熔断降级、系统负载保护、热点防护等多个维度来帮助开发者保障微服务的稳定性。 Sentinel 具有以下特性: 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应