基于二分图匹配算法的商家保量系统实践

2024-03-04 18:04

本文主要是介绍基于二分图匹配算法的商家保量系统实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

商家扶持保量系统的业务功能,是保证重点签约商家能够在当天拿到预期的流量。比较简单的保量方案是通过pid算法控制,即根据每个商家的放量进度输出pid系数(比如值域[1, 16]),乘以pxtr排序公式后参与最终排序,pid系数越高排序靠前的概率更高,该排序算法弊端是:

  1. 仅考虑商家的流量缺口,缺口越大透出概率越大,pxtr作用较小,流量匹配效率低下
  2. 商家给量不均匀,可能在商家直播的某个时间段给过高流量,导致商家效率不足

本文重点介绍的二分图匹配算法能够做到在匹配窗口内的流量分配全局最优,兼顾流量的分发效率和商家的流量需求,预期大幅提升扶持流量的整体效率,从而带动推荐系统整体效率提升。

二、匹配算法介绍

1、定义凸优化问题

min ⁡ − ∑ i , j w i , j V j x i , j + λ 2 ∑ i , j ∥ x i , j − p j ∥ 2 s . t . ∑ j x i , j ≤ 1 , ∀ i ( 1 ) ∑ i x i , j ≥ d j , ∀ i ( 2 ) x i , j ≥ 0 , ∀ i , j ( 3 ) \min{-\sum_{i,j}w_{i,j}V_j x_{i,j}} + \frac{\lambda}{2} \sum_{i,j}\|x_{i,j} - p_j\|^2\\ \begin{aligned} s.t. \quad \sum_j x_{i,j} & \le 1,\quad \forall i &(1)\\ \sum_i x_{i,j} & \ge d_j,\quad \forall i & (2)\\ x_{i,j} & \ge0,\quad \forall i,j & (3) \end{aligned} mini,jwi,jVjxi,j+2λi,jxi,jpj2s.t.jxi,jixi,jxi,j1,idj,i0,i,j(1)(2)(3)

其中:
i , j i,j i,j:表示第i次请求和第j个商家
w i , j w_{i,j} wi,j:表示第i次请求中用户对第j个商家的价值贡献,一般为pxtr的公式组合
V j V_j Vj:表示第j个商家的高光系数,亦即该商家的优先级
x i , j x_{i,j} xi,j:表示第i次请求透出第j个商家的概率,为待求解变量
d j d_j dj:表示第j个商家提报流量
p j = d j ∑ j d j p_{j} = \frac{d_j}{\sum_j d_j} pj=jdjdj:表示第j个商家平均能分配流量的比例,可以控制流量分配的平滑程度

注意:约束条件中
第一个为一次请求中只能选择最多给一个商家透出
第二个为对一个商家的累计曝光需要超过提报量
第三个为透出概率大于0

2、参数推导

凸优化问题转化为拉格朗日对偶问题
min ⁡ − ∑ i , j w i , j V j x i , j + λ 2 ∑ i , j ∥ x i , j − p j ∥ 2 + ∑ i β i ( ∑ j x i , j − 1 ) − ∑ j α j ( ∑ i x i , j − d j ) − ∑ i , j γ i , j x i , j \min{-\sum_{i,j}w_{i,j}V_j x_{i,j}} + \frac{\lambda}{2} \sum_{i,j}\|x_{i,j} - p_j\|^2 + \sum_{i}\beta_i \big(\sum_{j}x_{i,j} - 1\big) - \sum_{j}\alpha_j \big(\sum_{i}x_{i,j} - d_j\big) - \sum_{i,j}\gamma_{i,j}x_{i,j} mini,jwi,jVjxi,j+2λi,jxi,jpj2+iβi(jxi,j1)jαj(ixi,jdj)i,jγi,jxi,j

求导等于0得到
x i , j = ( α j − β i + w i , j V j + γ i , j ) / λ + p j x_{i,j} = (\alpha_j-\beta_i+w_{i,j}V_j + \gamma_{i,j})/\lambda + p_j xi,j=(αjβi+wi,jVj+γi,j)/λ+pj

根据KKT条件,要么 γ i , j = 0 \gamma_{i,j} = 0 γi,j=0,要么 x i , j = 0 x_{i,j} = 0 xi,j=0,因此上式可以简化为
x i , j = max ⁡ ( 0 , α j − β i + w i , j V j λ + p j ) = g i , j ( α j − β i ) \begin{aligned} x_{i,j} &= \max(0, \frac{\alpha_j-\beta_i+w_{i,j}V_j}{\lambda} + p_j) \\ &= g_{i,j}(\alpha_j - \beta_i) \end{aligned} xi,j=max(0,λαjβi+wi,jVj+pj)=gi,j(αjβi)

3、离线求解

不用考虑剩余流量(因为本方案没有人群限制,即对所有用户生效),利用坐标梯度下降法求解 α j \alpha_j αj β i \beta_i βi
1、对所有 j j j,初始化 α j = 0 \alpha_j = 0 αj=0

2、对于所有的流量 i i i,假设 α j \alpha_j αj已知,计算 β i \beta_i βi,使之满足
∑ j x i , j = 1 \sum_j x_{i,j} = 1 jxi,j=1
代入表达式即
∑ j g i , j ( α j − β i ) = 1 \sum_j g_{i,j}(\alpha_j - \beta_i) = 1 jgi,j(αjβi)=1
否则 β i \beta_i βi无解,设置为0

3、对于所有的商家 j j j,假设 β i \beta_i βi已知,计算 α j \alpha_j αj,使之满足
∑ i x i , j = d j \sum_i x_{i,j} = d_j ixi,j=dj
代入表达式即
∑ i g i , j ( α j − β i ) = d j \sum_i g_{i,j}(\alpha_j - \beta_i) = d_j igi,j(αjβi)=dj
否则 α j \alpha_j αj无解,设置为0

4、重复上述2、3步骤,直到 α j \alpha_j αj β i \beta_i βi收敛(实际限制最多迭代轮数即可)
注:在线存储只保存 α j \alpha_j αj

4、在线匹配

1、对于所有的流量 i i i,利用离线计算的 α j \alpha_j αj计算 β i \beta_i βi,使之满足
∑ j x i , j = 1 \sum_j x_{i,j} = 1 jxi,j=1
代入表达式即
∑ j g i , j ( α j − β i ) = 1 \sum_j g_{i,j}(\alpha_j - \beta_i) = 1 jgi,j(αjβi)=1
否则 β i \beta_i βi无解,设置为0

2、利用 α j \alpha_j αj β i \beta_i βi计算
x i , j = g i , j ( α j − β i ) = max ⁡ ( 0 , ( α j − β i + w i , j V j ) / λ + p j ) \begin{aligned} x_{i,j} &= g_{i,j}(\alpha_j - \beta_i) \\ &=\max(0, (\alpha_j-\beta_i+w_{i,j}V_j)/\lambda + p_j) \end{aligned} xi,j=gi,j(αjβi)=max(0,(αjβi+wi,jVj)/λ+pj)
并使用 x i , j x_{i,j} xi,j作为商家透出的概率,降序排列截取top

三、保量系统功能实践

系统分为三个主要模块
1、实时更新服务:获取商家实时获取曝光量,从而计算出该商家缺口曝光量,用来更新流量额度d和分配比例p
2、离线参数求解服务:记录每次请求模型预估组合打分 w i , j w_{i,j} wi,j,在线累计10w次请求后执行离线求解过程得到 α j \alpha_j αj β i \beta_i βi,最终只保存 α j \alpha_j αj
3、在线计算服务:处理实时请求时,使用离线求解的 α j \alpha_j αj和传入的 w i , j w_{i,j} wi,j根据公式计算得到 β i \beta_i βi,再根据公式计算得到 x i , j x_{i,j} xi,j作为商家透出的概率,降序排列截取top

整体流程如下:
在这里插入图片描述

1、离线求解代码实现
根据第二节的第3步可以看到,求解的公式都是带有max操作的一次方程,参考Solve equations using the max
function,可以转化为分段闭式解求解。迭代循环代码如下

for (int iter = 1; iter <= 20; ++iter) {LOG(INFO) << "begin iter=" << iter;// update betafor (int i = 0; i < user_num; ++i) {betas[i] = SolveBeta(alphas, user_flow_[i], probabilities, photo_num);}// update alphafor (int j = 0; j < photo_num; ++j) {alphas[j] = SolveAlpha(betas, photo_flow_[j], photo_allocation_[j], probabilities[j], demands[j], user_num);}// ensure non-negative alpha and betaint64_t min_alpha_beta = INT64_MAX;for (int i = 0; i < user_num; ++i) {min_alpha_beta = std::min(betas[i], min_alpha_beta);}for (int j = 0; j < photo_num; ++j) {min_alpha_beta = std::min(alphas[j], min_alpha_beta);}// alpha beta >= 0 ensure min_alpha_beta >= 0for (int i = 0; i < user_num; ++i) {betas[i] -= min_alpha_beta;}for (int j = 0; j < photo_num; ++j) {alphas[j] -= min_alpha_beta;}
}

求解 b e t a beta beta a l p h a alpha alpha的代码如下

float SolveBeta(const float *alphas, const float *weights, float *probabilities, size_t photo_num) {std::vector<float> target;for (size_t j = 0; j < photo_num; ++j) {if (probabilities[j] <= 0 || weights[j] <= 0) { //  user_flow_矩阵稀疏求解continue;}float alpha_score = alphas[j] + weights[j] + OBJECT_LAMBDA * probabilities[j];target.push_back(alpha_score);}float beta = 0.0;std::sort(target.begin(), target.end(), std::greater<float>());float target_sum = 0.0;float coef_sum = 0.0;int64_t solve_success = 0;for (size_t j = 0; j < target.size(); ++j) {target_sum += target[j];coef_sum += 1.0;float tmp_beta = (target_sum - OBJECT_LAMBDA) / coef_sum;if (tmp_beta > 0 && tmp_beta <= target[j]){beta = tmp_beta;solve_success = 1;break;}}return beta;
}float SolveAlpha(const float *betas, const float *weights, float probability, float demand, size_t user_num) {if (probability <= 0 || demand <= 0) { //  photo_flow_矩阵稀疏求解return 0;}std::vector<float> target;for (size_t i = 0; i < user_num; ++i) {if (weights[i] <= 0) { //  user_flow_矩阵稀疏求解continue;}float beta_score = weights[i] - betas[i] + OBJECT_LAMBDA * probability;target.push_back(beta_score);}float alpha = 0.0;std::sort(target.begin(), target.end(), std::greater<float>());float target_sum = 0.0;float coef_sum = 0.0;int64_t solve_success = 0;for (size_t i = 0; i < target.size(); ++i) {target_sum += target[i];coef_sum += 1.0;float tmp_alpha = (OBJECT_LAMBDA * demand / MAX_SCORE - target_sum) / coef_sum;if (tmp_alpha > 0 && tmp_alpha >= -target[i]){alpha = tmp_alpha;solve_success = 1;break;}}return alpha;
}

2、在线求解代码实现
在线求解只需要根据保存的 α \alpha α求解 β \beta β即可,流程和离线求解一致

float OnlineSolveBeta(const float *alphas, const float *weights, float *probabilities, size_t candidate_size) {std::vector<float> target;for (size_t j = 0; j < candidate_size; ++j) {if (probabilities[j] <= 0 || weights[j] <= 0) { //  user_flow_矩阵稀疏求解continue;}float alpha_score = alphas[j] + weights[j] + OBJECT_LAMBDA * probabilities[j];target.push_back(alpha_score);}float beta = 0.0;std::sort(target.begin(), target.end(), std::greater<float>());float target_sum = 0.0;float coef_sum = 0.0;int64_t solve_success = 0;for (size_t j = 0; j < target.size(); ++j) {target_sum += target[j];coef_sum += 1.0;float tmp_beta = (target_sum - OBJECT_LAMBDA) / coef_sum;if (tmp_beta > 0 && tmp_beta <= target[j]){beta = tmp_beta;solve_success = 1;break;}}return beta;
}

四、参考

https://segmentfault.com/a/1190000021419023
https://mp.weixin.qq.com/s/2VejGdsZrCxB8pD1y7Bqhg
https://zhuanlan.zhihu.com/p/348022042
https://zhuanlan.zhihu.com/p/123187987
https://zhuanlan.zhihu.com/p/36051733
https://github.com/wangrunjie/SHALE/tree/94b47ccbe4b4cabe233c9512350969cda57f2e08
https://math.stackexchange.com/questions/145458/solve-equations-using-the-max-function

这篇关于基于二分图匹配算法的商家保量系统实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773991

相关文章

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

CentOS系统使用yum命令报错问题及解决

《CentOS系统使用yum命令报错问题及解决》文章主要讲述了在CentOS系统中使用yum命令时遇到的错误,并提供了个人解决方法,希望对大家有所帮助,并鼓励大家支持脚本之家... 目录Centos系统使用yum命令报错找到文件替换源文件为总结CentOS系统使用yum命令报错http://www.cppc

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第