分布式ID生成算法|雪花算法 Snowflake | Go实现

2024-03-04 11:52

本文主要是介绍分布式ID生成算法|雪花算法 Snowflake | Go实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

在分布式领域中,不可避免的需要生成一个全局唯一ID。而在近几年的发展中有许多分布式ID生成算法,比较经典的就是 Twitter 的雪花算法(Snowflake Algorithm)。当然国内也有美团的基于snowflake改进的Leaf算法。那么今天我们就来介绍一下雪花算法。

雪花算法

算法来源: 世界上没有完全相同的两片雪花 。所以!雪崩的时候,没有任何一片雪花是相同的!

雪花算法的本质是生成一个64位的 long int 类型的id,可以拆分成一下几个部分:

  • 最高位固定位0。因为第一位为符号位,如果是1那么就是负数了。
  • 接下来的 41 位存储毫秒级时间戳,2^41 大概可以使用69年。
  • 再接来就是10位存储机器码,包括 5 位dataCenterId 和 5 位 workerId。最多可以部署2^10=1024台机器。
  • 最后12位存储序列号。统一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下可以生成 2^12=4096 个不重复id

在这里插入图片描述

雪花算法其实是强依赖于时间戳的,因为我们看上面生成的几个数字,我们唯一不可控的就是时间,如果发生了时钟回拨有可能会发生id生成一样了。

所以雪花算法适合那些与时间有强关联的业务 ,比如订单,交易之类的,需要有时间强相关的业务。

生成 ID 流程图

在这里插入图片描述
下面会结合代码讲述详细讲述这张图

代码实现

前置工作

既然是由上述的几个部分组成,那么我们可以先定义几个常量

// 时间戳的 占用位数
timestampBits = 41
// dataCenterId 的占用位数
dataCenterIdBits = 5
// workerId 的占用位数
workerIdBits = 5
// sequence 的占用位数
seqBits = 12

并且定义各个字段的最大值,防止越界

// timestamp 最大值, 相当于 2^41-1 = 2199023255551
timestampMaxValue = -1 ^ (-1 << timestampBits)
// dataCenterId 最大值, 相当于 2^5-1 = 31
dataCenterIdMaxValue = -1 ^ (-1 << dataCenterIdBits)
// workId 最大值, 相当于 2^5-1 = 31
workerIdMaxValue = -1 ^ (-1 << workerIdBits)
// sequence 最大值, 相当于 2^12-1 = 4095
seqMaxValue = -1 ^ (-1 << seqBits)

移动位数

// workId 向左移动12位(seqBits占用位数)因为这12位是sequence占的
workIdShift = 12
// dataCenterId 向左移动17位 (seqBits占用位数 + workId占用位数)
dataCenterIdShift = 17
// timestamp 向左移动22位 (seqBits占用位数 + workId占用位数 + dataCenterId占用位数)
timestampShift = 22

定义雪花生成器的对象,定义上面我们介绍的几个字段即可

type SnowflakeSeqGenerator struct {mu           *sync.Mutextimestamp    int64dataCenterId int64workerId     int64sequence     int64
}
func NewSnowflakeSeqGenerator(dataCenterId, workId int64) (r *SnowflakeSeqGenerator, err error) {if dataCenterId < 0 || dataCenterId > dataCenterIdMaxValue {err = fmt.Errorf("dataCenterId should between 0 and %d", dataCenterIdMaxValue-1)return}if workId < 0 || workId > workerIdMaxValue {err = fmt.Errorf("workId should between 0 and %d", dataCenterIdMaxValue-1)return}return &SnowflakeSeqGenerator{mu:           new(sync.Mutex),timestamp:    defaultInitValue - 1,dataCenterId: dataCenterId,workerId:     workId,sequence:     defaultInitValue,}, nil
}

具体算法

timestamp存储的是上一次的计算时间,如果当前的时间比上一次的时间还要小,那么说明发生了时钟回拨,那么此时我们不进行生产id,并且记录错误日志。

now := time.Now().UnixMilli()
if S.timestamp > now { // Clock callbacklog.Errorf("Clock moved backwards. Refusing to generate ID, last timestamp is %d, now is %d", S.timestamp, now)return ""
}

如果时间相等的话,那就说明这是在 同一毫秒时间戳内生成的 ,那么就进行seq的自旋,在这同一毫秒内最多生成 4095 个。如果超过4095的话,就等下一毫秒。

if S.timestamp == now {
// generate multiple IDs in the same millisecond, incrementing the sequence number to prevent conflictsS.sequence = (S.sequence + 1) & seqMaxValueif S.sequence == 0 {// sequence overflow, waiting for next millisecondfor now <= S.timestamp {now = time.Now().UnixMilli()}}
}

那么如果是不在同一毫秒内的话,seq直接用初始值就好了

else {// initialized sequences are used directly at different millisecond timestampsS.sequence = defaultInitValue
}

如果超过了69年,也就是时间戳超过了69年,也不能再继续生成了

tmp := now - epoch
if tmp > timestampMaxValue {log.Errorf("epoch should between 0 and %d", timestampMaxValue-1)return ""
}

记录这一次的计算时间,这样就可以和下一次的生成的时间做对比了。

S.timestamp = now

timestamp + dataCenterId + workId + sequence 拼凑一起,注意一点是我们最好用字符串输出,因为前端js中的number类型超过53位会溢出的

// combine the parts to generate the final ID and convert the 64-bit binary to decimal digits.
r := (tmp)<<timestampShift |(S.dataCenterId << dataCenterIdShift) |(S.workerId << workIdShift) |(S.sequence)return fmt.Sprintf("%d", r)

完整代码 & 测试文件

package sequenceimport ("fmt""sync""time""github.com/seata/seata-go/pkg/util/log"
)// SnowflakeSeqGenerator snowflake gen ids
// ref: https://en.wikipedia.org/wiki/Snowflake_IDvar (// set the beginning timeepoch = time.Date(2024, time.January, 01, 00, 00, 00, 00, time.UTC).UnixMilli()
)const (// timestamp occupancy bitstimestampBits = 41// dataCenterId occupancy bitsdataCenterIdBits = 5// workerId occupancy bitsworkerIdBits = 5// sequence occupancy bitsseqBits = 12// timestamp max value, just like 2^41-1 = 2199023255551timestampMaxValue = -1 ^ (-1 << timestampBits)// dataCenterId max value, just like 2^5-1 = 31dataCenterIdMaxValue = -1 ^ (-1 << dataCenterIdBits)// workId max value, just like 2^5-1 = 31workerIdMaxValue = -1 ^ (-1 << workerIdBits)// sequence max value, just like 2^12-1 = 4095seqMaxValue = -1 ^ (-1 << seqBits)// number of workId offsets (seqBits)workIdShift = 12// number of dataCenterId offsets (seqBits + workerIdBits)dataCenterIdShift = 17// number of timestamp offsets (seqBits + workerIdBits + dataCenterIdBits)timestampShift = 22defaultInitValue = 0
)type SnowflakeSeqGenerator struct {mu           *sync.Mutextimestamp    int64dataCenterId int64workerId     int64sequence     int64
}// NewSnowflakeSeqGenerator initiates the snowflake generator
func NewSnowflakeSeqGenerator(dataCenterId, workId int64) (r *SnowflakeSeqGenerator, err error) {if dataCenterId < 0 || dataCenterId > dataCenterIdMaxValue {err = fmt.Errorf("dataCenterId should between 0 and %d", dataCenterIdMaxValue-1)return}if workId < 0 || workId > workerIdMaxValue {err = fmt.Errorf("workId should between 0 and %d", dataCenterIdMaxValue-1)return}return &SnowflakeSeqGenerator{mu:           new(sync.Mutex),timestamp:    defaultInitValue - 1,dataCenterId: dataCenterId,workerId:     workId,sequence:     defaultInitValue,}, nil
}// GenerateId timestamp + dataCenterId + workId + sequence
func (S *SnowflakeSeqGenerator) GenerateId(entity string, ruleName string) string {S.mu.Lock()defer S.mu.Unlock()now := time.Now().UnixMilli()if S.timestamp > now { // Clock callbacklog.Errorf("Clock moved backwards. Refusing to generate ID, last timestamp is %d, now is %d", S.timestamp, now)return ""}if S.timestamp == now {// generate multiple IDs in the same millisecond, incrementing the sequence number to prevent conflictsS.sequence = (S.sequence + 1) & seqMaxValueif S.sequence == 0 {// sequence overflow, waiting for next millisecondfor now <= S.timestamp {now = time.Now().UnixMilli()}}} else {// initialized sequences are used directly at different millisecond timestampsS.sequence = defaultInitValue}tmp := now - epochif tmp > timestampMaxValue {log.Errorf("epoch should between 0 and %d", timestampMaxValue-1)return ""}S.timestamp = now// combine the parts to generate the final ID and convert the 64-bit binary to decimal digits.r := (tmp)<<timestampShift |(S.dataCenterId << dataCenterIdShift) |(S.workerId << workIdShift) |(S.sequence)return fmt.Sprintf("%d", r)
}

测试文件

func TestSnowflakeSeqGenerator_GenerateId(t *testing.T) {var dataCenterId, workId int64 = 1, 1generator, err := NewSnowflakeSeqGenerator(dataCenterId, workId)if err != nil {t.Error(err)return}var x, y stringfor i := 0; i < 100; i++ {y = generator.GenerateId("", "")if x == y {t.Errorf("x(%s) & y(%s) are the same", x, y)}x = y}
}

这篇关于分布式ID生成算法|雪花算法 Snowflake | Go实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773088

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("