【大厂AI课学习笔记NO.63】模型的维护

2024-03-04 11:20

本文主要是介绍【大厂AI课学习笔记NO.63】模型的维护,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说是模型的维护,其实这堂课都是在讲“在工业环境中开发和部署机器学习模型的流程”。

上图来自于我的笔记思维脑图,已经上传,要链接的访问的主页查看资源。

 

一路走来,我们学习了数据管理、模型学习、模型验证、模型部署等重要的步骤。

其中模型学习,包括模型选择和模型训练。

模型验证,要求:能够满足未知数据,泛化,合理处理,鲁棒性,满足需求;

在人工智能项目中,数据管理、模型学习、模型验证和模型部署是构建和运营机器学习模型的核心步骤。每个步骤都有其独特的作用,包含一系列关键技术、细分步骤、理念和工具方法。以下是对这些步骤的详细阐述:

数据管理

关键技术

  • 数据清洗:去除重复、错误或不完整的数据。
  • 数据转换:将数据转换成适合模型训练的格式。
  • 数据标注:为监督学习提供标签。
  • 数据存储:高效、安全地存储大量数据。

主要细分步骤

  1. 数据收集:从各种来源(如数据库、API、文件等)获取原始数据。
  2. 数据预处理:清洗、转换、标准化数据,以准备训练数据集。
  3. 数据分割:通常将数据分割为训练集、验证集和测试集。
  4. 数据版本控制:跟踪数据的变化,以便能够重现实验结果。

理念

  • 数据质量至关重要:高质量的数据是训练出高性能模型的基础。
  • 数据应代表实际场景:训练数据应尽可能反映模型将面对的真实世界情况。

工具和方法

  • 使用Pandas、SQL等工具进行数据清洗和转换。
  • 利用DVC、Git LFS等进行数据版本控制。
  • 应用数据湖、数据仓库等解决方案进行数据存储和管理。

模型学习

关键技术

  • 算法选择:根据问题类型(分类、回归、聚类等)选择合适的机器学习算法。
  • 超参数调优:调整模型参数以优化性能。
  • 损失函数:定义模型训练过程中的优化目标。
  • 优化器:选择如梯度下降等算法来最小化损失函数。

主要细分步骤

  1. 模型设计:基于业务理解和数据特征构建模型结构。
  2. 训练模型:使用训练数据集进行模型训练。
  3. 模型评估:在验证集上评估模型性能。
  4. 模型调整:根据评估结果调整模型结构或参数。

理念

  • 简洁性优先:在保持性能的同时,尽量简化模型以减少过拟合的风险和提高可解释性。
  • 持续学习:随着新数据的到来,模型应能够适应新的知识和模式。

工具和方法

  • 利用TensorFlow、PyTorch等深度学习框架进行模型设计和训练。
  • 使用Scikit-learn等机器学习库进行传统机器学习模型的构建。
  • 应用网格搜索、随机搜索或贝叶斯优化等方法进行超参数调优。

模型验证

关键技术

  • 交叉验证:评估模型在不同数据集上的泛化能力。
  • 性能指标:根据业务需求选择合适的评估指标(如准确率、召回率、F1分数等)。
  • 模型稳定性:检查模型在不同运行或不同数据分割下的性能一致性。
  • 偏差和方差分析:诊断模型性能不足的原因。

主要细分步骤

  1. 性能度量:在独立的测试集上评估模型性能。
  2. 错误分析:检查模型预测错误的案例以理解其局限性。
  3. 对比实验:与其他模型或基线进行比较以验证优越性。
  4. 模型解释性:使用如SHAP、LIME等工具理解模型决策依据。

理念

  • 信任但验证:即使模型在训练数据上表现良好,也需要在未见过的数据上进行验证。
  • 透明性和可解释性:模型应能够提供其决策的合理解释。

工具和方法

  • 使用模型评估库如MLflow、Neptune等进行实验跟踪和性能比较。
  • 应用统计测试来验证模型性能的提升是否显著。
  • 利用模型解释性工具进行模型决策的可视化和理解。

模型部署

关键技术

  • 模型序列化:将训练好的模型转换为可部署的格式。
  • 模型服务:构建API或Web服务以提供模型预测功能。
  • 容器化:使用Docker等技术将模型及其依赖项打包为容器。
  • 自动化部署:通过CI/CD流程自动将模型部署到生产环境。

主要细分步骤

  1. 模型导出:将模型从训练环境导出为可部署格式(如TensorFlow SavedModel、ONNX等)。
  2. 环境准备:设置生产环境的硬件和软件依赖。
  3. 部署模型:将模型部署到生产服务器或云平台上。
  4. 监控与维护:实时监控模型性能并进行必要的维护。

理念

  • 可靠性与稳定性至关重要:生产环境中的模型必须能够持续、稳定地提供服务。
  • 快速响应和弹性扩展:模型应能够迅速适应流量变化并弹性扩展资源。

工具和方法

  • 利用TensorFlow Serving、TorchServe或自定义服务框架进行模型服务化。
  • 使用Docker和Kubernetes进行容器化部署和管理。
  • 应用监控工具如Prometheus、Grafana以及日志分析工具进行实时性能监控和故障排查。

       

以上内容,在前面的笔记中,都有提到,欢迎关注,到我的主页查看。 

 

这篇关于【大厂AI课学习笔记NO.63】模型的维护的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773017

相关文章

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统