本文主要是介绍图像阈值处理---移动平均法(python 实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
背景
- 前几天在看那本比较经典的冈萨雷斯的《数字图像处理》,正看到图像分割一章中用移动平均法来进行分割。介绍该方法的时候用的章节较少,感觉看的不是很明白,于是在网上搜了一下发现该方法的介绍也很少,也没有找到python相关实现(找到一个不是免费的。。),只找到了matlab和C++的实现。所以根据代码又翻书理解了一下,简单写一下移动平均法,做个总结,后面有python的实现。
概念介绍
移动平均法是可变阈值处理的一种,可变阈值是相对于全局阈值处理来说的,全局阈值处理是指根据整张图片计算出一个固定的阈值,图片中的每个像素如果大于这个值就认为是前景,否则就是背景。而可变阈值是指图片中每个位置的像素点或像素块中有着不同的阈值,如果该像素点大于其对应的阈值则认为是前景。移动平均法是线性的z字形的扫描整个图片,每个点处都会产生一个阈值,用该点处的灰度值和该点处计算出阈值比较来分割图片。
方法
假设一幅5x5的图片如下所示,aij表示在位置(i, j)处的灰度值。
因为要按照z字形线性扫描,所以要把二维矩阵变成一维的行矩阵
移动平均算法中会用到两个参数n和b,n表示n个像素求平均,b是一个阈值系数。下面的一维矩阵可以作为滤波器对上面得到的图像的一维行矩阵进行滤波求平均
这样就可以得到每个点处的平均值mij,用参数b乘以mij就是这个像素点处的阈值
然后就可以把每个像素点的灰度和阈值进行比较得到最终的分割图像了。
python实现
import cv2
import numpy as np
from scipy.signal import lfilterN = 10
b = 0.5def max_min_value_filter(image, ksize=3, mode=1):img = image.copy()rows, cols = img.shape# if channels == 3:# img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)padding = (ksize-1) // 2new_img = cv2.copyMakeBorder(img, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=255)for i in range(rows):for j in range(cols):roi_img = new_img[i:i+ksize, j:j+ksize].copy()min_val, max_val, min_index, max_index = cv2.minMaxLoc(roi_img)if mode == 1:img[i, j] = max_valelif mode == 2:img[i, j] = min_valelse:raise Exception("please Select a Mode: max(1) or min(2)")return imgdef movingthreshold(f, n, k):shape = f.shapeassert n >= 1assert 0 < k < 1f[1:-1:2, :] = np.fliplr(f[1:-1:2, :])f = f.flatten()maf = np.ones(n) / nres_filter = lfilter(maf, 1, f)g = np.array(f > k * res_filter).astype(int)g = g.reshape(shape)g[1:-1:2, :] = np.fliplr(g[1:-1:2, :])g = g * 255# max value filter# g = max_min_value_filter(g, 3, 2)# cv2.blur(g, (3, 3))return gimg = cv2.imread('/path/to/image/file', 0)
res = movingthreshold(img, N, b)
cv2.imwrite('/path/to/results', res)
效果
原图
移动平均处理
最后再对结果进行一次最小值滤波
可以看到效果还是不错的!
最后贴一个风格迁移小程序,感兴趣可以玩一下。
这篇关于图像阈值处理---移动平均法(python 实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!