图像阈值处理---移动平均法(python 实现)

2024-03-04 03:59

本文主要是介绍图像阈值处理---移动平均法(python 实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

  • 前几天在看那本比较经典的冈萨雷斯的《数字图像处理》,正看到图像分割一章中用移动平均法来进行分割。介绍该方法的时候用的章节较少,感觉看的不是很明白,于是在网上搜了一下发现该方法的介绍也很少,也没有找到python相关实现(找到一个不是免费的。。),只找到了matlab和C++的实现。所以根据代码又翻书理解了一下,简单写一下移动平均法,做个总结,后面有python的实现。

概念介绍

移动平均法是可变阈值处理的一种,可变阈值是相对于全局阈值处理来说的,全局阈值处理是指根据整张图片计算出一个固定的阈值,图片中的每个像素如果大于这个值就认为是前景,否则就是背景。而可变阈值是指图片中每个位置的像素点或像素块中有着不同的阈值,如果该像素点大于其对应的阈值则认为是前景。移动平均法是线性的z字形的扫描整个图片,每个点处都会产生一个阈值,用该点处的灰度值和该点处计算出阈值比较来分割图片。

方法

假设一幅5x5的图片如下所示,aij表示在位置(i, j)处的灰度值。

因为要按照z字形线性扫描,所以要把二维矩阵变成一维的行矩阵
在这里插入图片描述

移动平均算法中会用到两个参数n和b,n表示n个像素求平均,b是一个阈值系数。下面的一维矩阵可以作为滤波器对上面得到的图像的一维行矩阵进行滤波求平均
在这里插入图片描述
这样就可以得到每个点处的平均值mij,用参数b乘以mij就是这个像素点处的阈值
在这里插入图片描述

然后就可以把每个像素点的灰度和阈值进行比较得到最终的分割图像了。

python实现

import cv2
import numpy as np
from scipy.signal import lfilterN = 10
b = 0.5def max_min_value_filter(image, ksize=3, mode=1):img = image.copy()rows, cols = img.shape# if channels == 3:#     img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)padding = (ksize-1) // 2new_img = cv2.copyMakeBorder(img, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=255)for i in range(rows):for j in range(cols):roi_img = new_img[i:i+ksize, j:j+ksize].copy()min_val, max_val, min_index, max_index = cv2.minMaxLoc(roi_img)if mode == 1:img[i, j] = max_valelif mode == 2:img[i, j] = min_valelse:raise Exception("please Select a Mode: max(1) or min(2)")return imgdef movingthreshold(f, n, k):shape = f.shapeassert n >= 1assert 0 < k < 1f[1:-1:2, :] = np.fliplr(f[1:-1:2, :])f = f.flatten()maf = np.ones(n) / nres_filter = lfilter(maf, 1, f)g = np.array(f > k * res_filter).astype(int)g = g.reshape(shape)g[1:-1:2, :] = np.fliplr(g[1:-1:2, :])g = g * 255# max value filter# g = max_min_value_filter(g, 3, 2)# cv2.blur(g, (3, 3))return gimg = cv2.imread('/path/to/image/file', 0)
res = movingthreshold(img, N, b)
cv2.imwrite('/path/to/results', res)

效果

原图
在这里插入图片描述
移动平均处理
在这里插入图片描述
最后再对结果进行一次最小值滤波
在这里插入图片描述
可以看到效果还是不错的!
在这里插入图片描述
最后贴一个风格迁移小程序,感兴趣可以玩一下。

这篇关于图像阈值处理---移动平均法(python 实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771938

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF