图像阈值处理---移动平均法(python 实现)

2024-03-04 03:59

本文主要是介绍图像阈值处理---移动平均法(python 实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

  • 前几天在看那本比较经典的冈萨雷斯的《数字图像处理》,正看到图像分割一章中用移动平均法来进行分割。介绍该方法的时候用的章节较少,感觉看的不是很明白,于是在网上搜了一下发现该方法的介绍也很少,也没有找到python相关实现(找到一个不是免费的。。),只找到了matlab和C++的实现。所以根据代码又翻书理解了一下,简单写一下移动平均法,做个总结,后面有python的实现。

概念介绍

移动平均法是可变阈值处理的一种,可变阈值是相对于全局阈值处理来说的,全局阈值处理是指根据整张图片计算出一个固定的阈值,图片中的每个像素如果大于这个值就认为是前景,否则就是背景。而可变阈值是指图片中每个位置的像素点或像素块中有着不同的阈值,如果该像素点大于其对应的阈值则认为是前景。移动平均法是线性的z字形的扫描整个图片,每个点处都会产生一个阈值,用该点处的灰度值和该点处计算出阈值比较来分割图片。

方法

假设一幅5x5的图片如下所示,aij表示在位置(i, j)处的灰度值。

因为要按照z字形线性扫描,所以要把二维矩阵变成一维的行矩阵
在这里插入图片描述

移动平均算法中会用到两个参数n和b,n表示n个像素求平均,b是一个阈值系数。下面的一维矩阵可以作为滤波器对上面得到的图像的一维行矩阵进行滤波求平均
在这里插入图片描述
这样就可以得到每个点处的平均值mij,用参数b乘以mij就是这个像素点处的阈值
在这里插入图片描述

然后就可以把每个像素点的灰度和阈值进行比较得到最终的分割图像了。

python实现

import cv2
import numpy as np
from scipy.signal import lfilterN = 10
b = 0.5def max_min_value_filter(image, ksize=3, mode=1):img = image.copy()rows, cols = img.shape# if channels == 3:#     img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)padding = (ksize-1) // 2new_img = cv2.copyMakeBorder(img, padding, padding, padding, padding, cv2.BORDER_CONSTANT, value=255)for i in range(rows):for j in range(cols):roi_img = new_img[i:i+ksize, j:j+ksize].copy()min_val, max_val, min_index, max_index = cv2.minMaxLoc(roi_img)if mode == 1:img[i, j] = max_valelif mode == 2:img[i, j] = min_valelse:raise Exception("please Select a Mode: max(1) or min(2)")return imgdef movingthreshold(f, n, k):shape = f.shapeassert n >= 1assert 0 < k < 1f[1:-1:2, :] = np.fliplr(f[1:-1:2, :])f = f.flatten()maf = np.ones(n) / nres_filter = lfilter(maf, 1, f)g = np.array(f > k * res_filter).astype(int)g = g.reshape(shape)g[1:-1:2, :] = np.fliplr(g[1:-1:2, :])g = g * 255# max value filter# g = max_min_value_filter(g, 3, 2)# cv2.blur(g, (3, 3))return gimg = cv2.imread('/path/to/image/file', 0)
res = movingthreshold(img, N, b)
cv2.imwrite('/path/to/results', res)

效果

原图
在这里插入图片描述
移动平均处理
在这里插入图片描述
最后再对结果进行一次最小值滤波
在这里插入图片描述
可以看到效果还是不错的!
在这里插入图片描述
最后贴一个风格迁移小程序,感兴趣可以玩一下。

这篇关于图像阈值处理---移动平均法(python 实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/771938

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景