pytorch基础4-自动微分

2024-03-03 18:12
文章标签 基础 自动 pytorch 微分

本文主要是介绍pytorch基础4-自动微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

专题链接:https://blog.csdn.net/qq_33345365/category_12591348.html

本教程翻译自微软教程:https://learn.microsoft.com/en-us/training/paths/pytorch-fundamentals/

初次编辑:2024/3/2;最后编辑:2024/3/3


本教程第一篇:介绍pytorch基础和张量操作

本教程第二篇:介绍了数据集与归一化

本教程第三篇:介绍构建模型层的基本操作。

本教程第四篇:介绍自动微分相关知识,即本博客内容。

另外本人还有pytorch CV相关的教程,见专题:

https://blog.csdn.net/qq_33345365/category_12578430.html


自动微分


使用torch.autograd自动微分 Automaic differentiation

在训练神经网络时,最常用的算法是反向传播(back propagation)。在这个算法中,参数(模型权重)根据损失函数相对于给定参数的梯度进行调整。损失函数(loss function)计算神经网络产生的预期输出和实际输出之间的差异。目标是使损失函数的结果尽可能接近零。该算法通过神经网络向后遍历以调整权重和偏差来重新训练模型。这就是为什么它被称为反向传播。随着时间的推移,通过反复进行这种回传和前向过程来将损失(loss)减少到0的过程称为梯度下降。

为了计算这些梯度,PyTorch具有一个内置的微分引擎,称为torch.autograd。它支持对任何计算图进行梯度的自动计算。

考虑最简单的单层神经网络,具有输入x,参数wb,以及某些损失函数。可以在PyTorch中如下定义:

import torchx = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b  # z = x*w +b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

张量、函数与计算图(computational graphs)

在这个网络中,wb参数,他们会被损失函数优化。因此,需要能够计算损失函数相对于这些变量的梯度。为此,我们将这些张量的requires_grad属性设置为True。

**注意:**您可以在创建张量时设置requires_grad的值,也可以稍后使用x.requires_grad_(True)方法来设置。

我们将应用于张量的函数(function)用于构建计算图,这些函数是Function类的对象。这个对象知道如何在前向方向上计算函数,还知道在反向传播步骤中如何计算其导数。反向传播函数的引用存储在张量的grad_fn属性中。

print('Gradient function for z =',z.grad_fn)
print('Gradient function for loss =', loss.grad_fn)

输出是:

Gradient function for z = <AddBackward0 object at 0x00000280CC630CA0>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward object at 0x00000280CC630310>

计算梯度

为了优化神经网络中参数的权重,需要计算损失函数相对于参数的导数,即我们需要在某些固定的xy值下计算 ∂ l o s s ∂ w \frac{\partial loss}{\partial w} wloss ∂ l o s s ∂ b \frac{\partial loss}{\partial b} bloss。为了计算这些导数,我们调用loss.backward(),然后从w.gradb.grad中获取值。

loss.backward()
print(w.grad)
print(b.grad)

输出是:

tensor([[0.2739, 0.0490, 0.3279],[0.2739, 0.0490, 0.3279],[0.2739, 0.0490, 0.3279],[0.2739, 0.0490, 0.3279],[0.2739, 0.0490, 0.3279]])
tensor([0.2739, 0.0490, 0.3279])

注意: 只能获取计算图中设置了requires_grad属性为True的叶节点的grad属性。对于计算图中的所有其他节点,梯度将不可用。此外,出于性能原因,我们只能对给定图执行一次backward调用以进行梯度计算。如果我们需要在同一图上进行多次backward调用,我们需要在backward调用中传递retain_graph=True

禁用梯度追踪 Disabling gradient tracking

默认情况下,所有requires_grad=True的张量都在跟踪其计算历史并支持梯度计算。然而,在某些情况下,我们并不需要这样做,例如,当我们已经训练好模型并且只想将其应用于一些输入数据时,也就是说,我们只想通过网络进行前向计算。我们可以通过将我们的计算代码放在一个torch.no_grad()块中来停止跟踪计算:

z = torch.matmul(x, w)+b
print(z.requires_grad)with torch.no_grad():z = torch.matmul(x, w)+b
print(z.requires_grad)

输出是:

True
False

另外一种产生相同结果的方法是在张量上使用detach方法:

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)

有一些理由你可能想要禁用梯度跟踪:

  • 将神经网络中的某些参数标记为冻结参数(frozen parameters)。这在微调预训练网络的情况下非常常见。
  • 当你只进行前向传播时,为了加速计算,因为不跟踪梯度的张量上的计算更有效率。

计算图的更多知识

概念上,autograd 在一个有向无环图 (DAG) 中保留了数据(张量)和所有执行的操作(以及生成的新张量),这些操作由 Function 对象组成。在这个 DAG 中,叶子节点是输入张量,根节点是输出张量。通过从根节点到叶子节点追踪这个图,你可以使用链式法则(chain rule)自动计算梯度。

在前向传播中,autograd 同时执行两件事情:

  • 运行所请求的操作以计算结果张量,并且
  • 在 DAG 中维护操作的 梯度函数(gradient function)

当在 DAG 根节点上调用 .backward() 时,反向传播开始。autograd 然后:

  • 从每个 .grad_fn 计算梯度,
  • 将它们累积在相应张量的 .grad 属性中,并且
  • 使用链式法则一直传播到叶子张量。

PyTorch 中的 DAG 是动态的

一个重要的事情要注意的是,图是从头开始重新创建的;在每次 .backward() 调用之后,autograd 开始填充一个新的图。这正是允许您在模型中使用控制流语句的原因;如果需要,您可以在每次迭代中更改形状、大小和操作。

代码汇总:

import torchx = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w) + b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)print('Gradient function for z =', z.grad_fn)
print('Gradient function for loss =', loss.grad_fn)loss.backward()
print(w.grad)
print(b.grad)z = torch.matmul(x, w) + b
print(z.requires_grad)with torch.no_grad():z = torch.matmul(x, w) + b
print(z.requires_grad)z = torch.matmul(x, w) + b
z_det = z.detach()
print(z_det.requires_grad)

这篇关于pytorch基础4-自动微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770478

相关文章

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p