Leetcoder Day35| 动态规划part02

2024-03-03 15:28

本文主要是介绍Leetcoder Day35| 动态规划part02,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

62.不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

本题会想到是一个深度搜索的问题,用二叉树求解,但是这样会超出时间限制,这种下一步需要上一步来推导的,可以优先考虑动态规划。因为本题要求有多少条从起点到终点的可能路径,这里需要定义的是一个二维数组,因为坐标包括两个值,start为[0,0],end为[m-1, n-1]。dp为路径条数。。题目规定每次只能向右或向下移动。所以到终点end的时候,上一步只能是来自其左边或者上边,所以end的位置只能来自(m-2, n-1)或(m-1, n-2)。

  1. 确定dp数组以及下标的含义:dp[i][j]表示从(0,0)出发,到(i, j) 有dp[i][j]条不同的路径。
  2. 确定递推公式:因为终点只能通过其左或者上面到达,所以dp[i][j]=dp[i-1][j]+dp[i][j-1]
  3. dp数组如何初始化:因为只能从上或左走,不存在斜着走的情况,所以从(0,0)到达(0,n)或(m,0)只能一直向下或向左,可能路径条数均为1,即dp[i][0]=1,dp[0][j]=1
  4. 确定遍历顺序:遍历顺序就是从1开始左向右,从上到下一层层遍历
  5. 举例推导dp数组:这里没法直接给出dp的举例
class Solution {public int uniquePaths(int m, int n) {int[][] dp=new int[m][n];for(int i=0;i<m;i++) dp[i][0]=1;for(int j=0;j<n;j++) dp[0][j]=1;for(int i=1;i<m;i++){for(int j=1;j<n;j++){dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];}
}

63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

本意跟上一题不用路径的区别在于,这里多了障碍物的限制条件,因此当存在障碍物的时候,这条路径就被去掉即可,因此初始化和遍历时,都需要多加一个判断障碍物的条件,如果(i,j)位置有障碍物,就为0。如果起点和终点有障碍物,则为0。

class Solution {public int uniquePathsWithObstacles(int[][] obstacleGrid) {//先定义m和nint m=obstacleGrid.length;int n=obstacleGrid[0].length;int[][] dp= new int[m][n];if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1) return 0;for(int i=0;i<m && obstacleGrid[i][0]==0;i++) dp[i][0]=1;for(int j=0;j<n && obstacleGrid[0][j]==0;j++) dp[0][j]=1;for(int i=1;i<m;i++){for(int j=1;j<n;j++){if(obstacleGrid[i][j]==1) continue;dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];}
}

这篇关于Leetcoder Day35| 动态规划part02的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770046

相关文章

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作