【MetaGPT】单智能体多动作实践——AI小说家

2024-03-03 11:44

本文主要是介绍【MetaGPT】单智能体多动作实践——AI小说家,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们定义智能体应该具备哪些行为,为智能体配备这些能力,我们就拥有了一个简单可用的智能体!MetaGPT具有高度灵活性,可定义自己所需的行为和智能体!

最终效果

一键生成技术文档,比如字数约有5千7的Mysql教程。

生成技术文档

一键输出长篇网络小说,字数长达1万7千字!(存在大纲层级问题,预计是提示词工程问题。)

生成小说

智能体概念

我们先看一下单智能体执行任务的运行周期:

单智能体运行周期( 图源 MetaGPT官方文档)

显然,智能体执行的周期包含: 观察 + 思考 + 行动 三部分。

然而,在MetaGPT框架中,一个智能体封装成一个角色🤖(Role)。

一个角色往往具有:

  • 大语言模型加持的大脑(可选)
  • 能够记住自己之前做过什么的记忆(可选)

此时我们使用下面更加丰富的框架表示:

agent框架( 图源 Datawhale Hugging MutiAgent)

了解了大致流程之后,针对本节内容,我们以技术文档生成(官方示例代码)和一键生成小说(魔改)为例,我们需要着重学习一下,其中的ActionRoleMemory

整体思路

如果我们需要生成一个技术文档,我们可以先攥写该技术的所有知识点,随后,我们遍历所有的知识点,逐一细化即可生成一份完整的技术文档。

Action概念

类 Action 是动作的逻辑抽象。可以在这里通过代码执行任何事情,包括执行代码,检索,也可以通过简单地调用 self._aask 函数令 LLM 赋予这个动作能力,即这个函数将在底层调用 LLM api。

技术文档生成

如果我们需要生成一个技术文档,我们可以先攥写该技术的所有知识点,随后,我们遍历所有的知识点,逐一细化即可生成一份完整的技术文档。

所以我们提炼出两个动作,一个写大纲,一个根据知识点攥写细化文档。

Action:编写大纲
Action:编写内容

这里的prompt其实就是根据变量填充的字符串,通过调用_aask获取生成结果。当然,写大纲的话我们需要额外做一点格式化输出和提取。

小说生成

同样地,在攥写小说时,我们可以先攥写一个小说的大纲,随后根据大纲,再去丰富完善我们每一个章节的小说内容。

Action:编写小说大纲

此处我们修改了prompt,使得询问LLM时预先定义好小说的人物角色以及关系。限定其额外返回characters。

为什么要这么做

考虑到分章节后,每次传入如果仅给出一个小说的标题和要求,那么小说的连贯性以及其他配角角色会出现遗忘。

第一次尝试结果

 故我们除了像技术文档给出大纲知识点(title)之外,为了确保连续性,我们也需要生成出小说的角色(characters),最后在写具体内容的时候提供角色以及上一次的情节(memory)。

Action:编写小说内容

我猜你会问到,为什么多了一个memory。

我知道你很急,但是你先别急。

下面我们先说说我们在哪里用到这些Action


Role概念

Role顾名思义就是我们定义好的智能体角色。最简单的角色只需要指定 Role 的 name(昵称) 和 profile(人设),并重写Role基类的 __init___act 方法。

相关源代码如下:

Role 基类

我们可以看到,我们还可以设定goal、constraints、desc等属性。实际上这些都会作为prompt辅助提示大模型。

通过注释,可知设置动作系统的场景:
1. 在使用 Role(actions=[…]) 时调用 __init__
2. 使用 role.set_action(action) 为角色添加动作
3. 使用 role.set_todo(action) 设置待办事项
4. 当 role.system_prompt 正在更新时(例如,通过 role.system_prompt = "...")
另外,如果尚未设置 llm,我们将使用角色的 llm
 

技术文档助手

我们看下教程助手的角色定义:(重点__init__)

文档助手定义
文档助手定义

super().__init__(**kwargs) 调用了基类 Role 的构造函数。
self.set_actions([WriteDirectory(language=self.language)]) 设置角色的动作,这里定义了一个 WriteDirectory 动作,该动作将生成目录结构。
self._set_react_mode(react_mode=RoleReactMode.BY_ORDER.value) 设置角色的反应模式,按顺序执行。

从现在来看,似乎这个Role只会写大纲,我们再去看看当实际触发这个动作之后,Role调用_act会发生什么。

动作基函数

此处的todo.run就会去调用我们开始定义的Action。

随后通过自定义的大纲处理函数,拆分我们需要的知识点。

大纲处理

最终的react便是直接输出文件。

最终的结束动作

至此,我们便捋清了我们的技术文档生成的部分。

小说家

小说家和教程助手最大的差别在于不仅需要传输章节标题给具体内容细化的动作,同时还需要:

  • 记住人名,不然换一个章节就换一个人名了。
  • 记住上一次的剧情,方便下一章节的小说可以继续流畅地延续。

好,现在我们想想,我们可以一开始让大模型设想一个角色介绍。所以我们定义小说家的时候,其实可以将characters作为这个小说的一个属性。方便我们构造WriteContent动作。

小说家定义

但是我们在定义的时候,小说家会知道自己上一章写了什么吗?

不,在他开始动笔前是不知道的。

只有每次动笔之后,才知道上一章写了什么。

因此,在执行动作时,我们额外为生成的内容进行记忆,存储memory中,并且在下一次调用时获取最新的章节。(详见WriteContent部分代码。后续memory部分仅做介绍。)

小说家动作

Memory概念

记忆是智能体的核心组件之一。智能体需要记忆来获取做出决策或执行动作所需的基本上下文,还需要记忆来学习技能或积累经验。

在MetaGPT中,Memory类是智能体的记忆的抽象。当初始化时,Role初始化一个Memory对象作为self.rc.memory属性,它将在之后的_observe中存储每个Message,以便后续的检索。简而言之,Role的记忆是一个含有Message的列表。


检索记忆

当需要获取记忆时(获取LLM输入的上下文),你可以使用self.get_memories。函数定义如下:

def get_memories(self, k=0) -> list[Message]:"""A wrapper to return the most recent k memories of this role, return all when k=0"""return self.rc.memory.get(k=k)

要是我们再往下翻一级源码,就会发现,此处的memory.get(k=k)实际上是逆序取的k个。


 

添加记忆

可以使用`self.rc.memory.add(msg)`添加记忆,其中msg必须是Message的实例。
建议在定义_act逻辑时将Message的动作输出添加到Role的记忆中。通常,Role需要记住它先前说过或做过什么,以便采取下一步的行动。
 

测试函数

最后我们只需要调用如下代码即可。(AI小说同理)

总结

我们借着 技术文档生成 以及 小说生成 为例, 主要学习了Action、Role、Memory概念。当然,其中重要的概念不止这些,包括传递的消息类Message。

但是!胖子不是一口吃成的,是一口一口吃成的。

随着后续进一步的扩展,包括源码的研读,这个过程本身就颇具收获。

当然,AI小说家的prompt需要自己编写,这里没有放出来,或许就能写一个更优秀的小说呢?

这篇关于【MetaGPT】单智能体多动作实践——AI小说家的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769508

相关文章

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Ubuntu中Nginx虚拟主机设置的项目实践

《Ubuntu中Nginx虚拟主机设置的项目实践》通过配置虚拟主机,可以在同一台服务器上运行多个独立的网站,本文主要介绍了Ubuntu中Nginx虚拟主机设置的项目实践,具有一定的参考价值,感兴趣的可... 目录简介安装 Nginx创建虚拟主机1. 创建网站目录2. 创建默认索引文件3. 配置 Nginx4