本文主要是介绍n介导plus!,高阶导数求法又增加了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
我曾经的n介导的经历
上面是我曾经在n介导求导的一个例子,如今呢,我又碰到了相关了列题,也是求n介导,其中的方法也是我曾经有印象的,但很可惜,当初还没接触csdn,没在上面记下来。
现在呢,该记下来了
上题目:,求n介导
有两种方法可以解决它
第一种,也是我一开始记得这种方法,可惜随着时间的流逝,历年考试也没怎么考到,有点淡忘这种方法了,还好如今碰到这道题了,让我想起来了。
看到该题目的型式,其中分子的次数比分母次数大,我们称它为假分式,而假分式可以通过一定手段一定可以变成真分式,而真分式求导就有一定规律可循。第一题我们就用假分式来处理。
我们通过分子 以保持不变,然后再提出一个来对分母进行约分,这时候分子就剩下一个,以此类推,我们对分子再进行加数减数,到最后变成一个真分式,即
因为我们是对它进行的n介导,很显然前面的0,但如果是n-1次导前面就是n-1的阶层,再看看后面是,我们知道它的n介导,再不行我们也可以对它找规律,所以
=
第二种,我们用因式分解来求解决
首先我们得知道高阶的因式分解的化简方式:
这个就是n次的因式分解型式,接下来很简单,就是分子加一减一然后进行对前面的进行因式分解,后面单独拎出来进行考虑,之后也会变成这样的型式,之后答案是一样的
=
这篇关于n介导plus!,高阶导数求法又增加了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!