【CTR预估】DSIN模型

2024-03-03 01:38
文章标签 模型 ctr 预估 dsin

本文主要是介绍【CTR预估】DSIN模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近看了一篇文章‘Deep Session Interest Network for Click-Through Rate Prediction’, 这篇是阿里发表在IJCAI2019的文章。

文章地址:https://arxiv.org/abs/1905.06482

作者还开源了代码:https://github.com/hhh920406/DSIN

淘宝最近也公开了一个rank模型,和这个有一点点像,也可以看看,模型要比这个要简单点:https://mp.weixin.qq.com/s/1y8jTqCcI7HkMA3qXtqdIg

模型是用于CTR预估的,整个模型在传统的DNN模型基础上,加上了tranformer结构和Bi-LSTM来分别捕捉session内和session间的内在联系,最后通过attention机制对目标item和由两个结构生成的session内顺序信息和session之间顺序信息加权输出,和用户画像embedding,以及item画像embedding一起concate起来,送入MLP里做分类。整体给我的感觉是思路很棒,但是感觉这个预估模型有点重,像我这种小公司的线上服务rt还不一定能用起来......

Based model

文章先大概介绍了一下使用DNN来构造ctr预估模型的一个基本框架。

1.embedding。这个是必须的,一般稀疏类别特征,不出意外都可以用embedding来操作。这个一方面可以降低输入的维度,还可以将特征映射到高纬空间学习出不同特征值之间的距离,而不是像onehot一样,每个特征值都一样。当然还有好多优点,比如方便后续计算,使用;方便将不同域的特征映射到同一空间进行比较等等,优点多多。

2.MLP。基本上将稀疏类别特征embedding化后,和稠密特征一起concate起来就可以直接送入神经网络,进行训练,这样就可以组成一个基本的DNN网络,用于分类,回归等。

DSIN模型

                        

如上图所示是模型的整体结构,左侧的User Field 和Item Field就是上面说的稀疏类别特征的embedding和稠密特征的组合,这里按user和item做了区分。文章的核心工作在右边这块。

从下到上

Session Divsion Layer

这块的工作是将用户的历史行为划分成不同session,将历史行为的items以三十分钟为界,划分成不同的session。并且为了保持维度的一致,每个session的长度是一致的,多了的截断,少了的按0填充。session的个数也保持一致。

                                                             

Q就是一个session,b表示session的行为。

Session Interest Extractor Layer

这一步的目的就是去捕获session list中每个session内部的行为关系。将session作为输入,送入tranformer结构。

session在送入tranformer之前使用了一个操作Bias Encoding.

                                                                 

用了三个矩阵分别对session本身,session中的每个位置,每个位置处id的embedding的每个维度都加上了一个偏置项。源码如下:

          

然后将偏置项加入到输入的session list中

                                                                             

         

这一步应该算是对原始tranformer中position encoding的优化,利用偏置项来区分不同位置session,不同位置的item,以及不同位置的embedding值。

接着把经过Bias Encoding处理的输入session list传入tranformer结构里:

                                               

tranformer输出的结果被再次输入一个前向网络里面做了一层映射

                                                        

然后再用average pooling把每个session的维度进行压缩:

                                                                       

到这为止,或得到了每个session的一个内在表示,就是图里面的:

                                                                 

Session Interest Interacting Layer

文章为了捕获不同session之间的顺序关系,使用了Bi-LSTM。Bi-LSTM是双向的,可以同时捕获上下文关系。

因此经过Bi-LSTM编码的输入,每个维度的输出向量其实都包含了输入数据同一位置的前后信息。这步获得的数据是图中的:

                                                             

到这为止,模型已经同时捕获到了session内部和session之间的顺序关系。如果想简单一点,直接把这两者的输出结果和图中左侧的画像特征concate起来也可以。不过文章作者在concate前对两者的输出做了一层attention,用来判断sesison信息和目标item之间的相关性。

Session Interest Activating Layer

                                                  

attention的query就是公式中的X,就是目标item的embedding。item的embedding是item画像特征所有embedding一起concate起来获得的。value和key就是前面获得两个输出I和H。

最后把以上这些向量都组合起来送入DNN中进行训练。

文章总的来说,思路清晰,之前看过一些文章基本只会去考虑session内部的关系,很少有考虑session之间的关系,还把NLP中的tranformer模型用到了ctr预估。

这篇关于【CTR预估】DSIN模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/768060

相关文章

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

OpenCompass:大模型测评工具

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factor

模型压缩综述

https://www.cnblogs.com/shixiangwan/p/9015010.html

AI赋能天气:微软研究院发布首个大规模大气基础模型Aurora

编者按:气候变化日益加剧,高温、洪水、干旱,频率和强度不断增加的全球极端天气给整个人类社会都带来了难以估计的影响。这给现有的天气预测模型提出了更高的要求——这些模型要更准确地预测极端天气变化,为政府、企业和公众提供更可靠的信息,以便做出及时的准备和响应。为了应对这一挑战,微软研究院开发了首个大规模大气基础模型 Aurora,其超高的预测准确率、效率及计算速度,实现了目前最先进天气预测系统性能的显著

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<

关于文章“python+百度语音识别+星火大模型+讯飞语音合成的语音助手”报错的修改

前言 关于我的文章:python+百度语音识别+星火大模型+讯飞语音合成的语音助手,运行不起来的问题 文章地址: https://blog.csdn.net/Phillip_xian/article/details/138195725?spm=1001.2014.3001.5501 1.报错问题 如果运行中报错,且报错位置在Xufi_Voice.py文件中的pcm_2_wav,如下图所示

3D模型相关生成

3D模型相关生成 1. DreamFusion Model DreamFusion Model 是一种将文本描述转化为三维模型的技术。你可以想象它是一个“魔法翻译器”,你告诉它一个场景或物体的描述,比如“一个飞翔的龙”,它就能生成一个相应的 3D 模型。 原理: 文本到图像生成:DreamFusion 首先将文本描述转化为一系列可能的 2D 图像。这部分利用了预训练的扩散模型(如 DALL