Leetcoder Day34| 动态规划part01

2024-03-02 18:20

本文主要是介绍Leetcoder Day34| 动态规划part01,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划的每一个状态一定是从上一个状态推导出来的,这一点有别于贪心算法,贪心是从局部直接选择最优,不需要推导。

比如背包问题:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

贪心算法思路:每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

动态规划思路:dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

动态规划的解题步骤

一共有五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

要先确定递推公式,然后在考虑初始化,因为一些情况是递推公式决定了dp数组如何初始化。

动态规划应该如何debug

写动规题目,代码出问题很正常!

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

一些同学对于dp的学习是黑盒的状态,就是不清楚dp数组的含义,不懂为什么这么初始化,递推公式背下来了,遍历顺序靠习惯就是这么写的,然后一鼓作气写出代码,如果代码能通过万事大吉,通过不了的话就凭感觉改一改。这是一个很不好的习惯!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了。

可以自己先思考这三个问题:

  • 这道题目我举例推导状态转移公式了么?
  • 我打印dp数组的日志了么?
  • 打印出来了dp数组和我想的一样么?

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

  • 输入:3
  • 输出:2
  • 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

按照动态规划5部曲:

  1. 确定dp数组(dp table)以及下标的含义:第i个数的斐波那契数值是dp[i]
  2. 确定递推公式:题目中已经给出,dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:题目中把如何初始化也直接给我们了:dp[0] = 0;dp[1] = 1;
  4. 确定遍历顺序:dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
  5. 举例推导dp数组:0 1 1 2 3 5 当n=5
class Solution {        public int fib(int n) {if(n<2) return n;int[] dp= new int[n+1];dp[0]=0;dp[1]=1;for(int i=2;i<=n;i++){dp[i]=dp[i-1]+dp[i-2];}return dp[n];}
}

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    • 1 阶 + 1 阶
    • 2 阶

示例 2:

  • 输入: 3
  • 输出: 3
  • 解释: 有三种方法可以爬到楼顶。
    • 1 阶 + 1 阶 + 1 阶
    • 1 阶 + 2 阶
    • 2 阶 + 1 阶

本题爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

  1. 确定dp数组(dp table)以及下标的含义:dp[i]:爬到第i层有dp[i]种方法
  2. 确定递推公式:上i-1层时有dp[i-1]个方法,那么一次走一个台阶,上到第i层时有dp[i]种方法,或者上i-2层时有dp[i-2]个方法,那么一次走两个台阶,上到第i层时有dp[i]种方法。所以此时dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:i=1时,dp[1]=1,i=2时,dp[2]=2
  4. 确定遍历顺序:从前向后
  5. 举例推导dp数组:i=5时 1 2 3 5 8
class Solution {/**确定dp数组(dp table)以及下标的含义:dp[i]:爬到第i层有dp[i]种方法确定递推公式:上i-1层时有dp[i-1]个方法,那么一次走一个台阶,上到第i层时有dp[i]种方法,或者上i-2层时有dp[i-2]个方法,那么一次走两个台阶,上到第i层时有dp[i]种方法dp数组如何初始化:i=1时,dp[1]=1,i=2时,dp[2]=2确定遍历顺序:从前向后举例推导dp数组:i=5时 1 2 3 5 8*/public int climbStairs(int n) {if(n<3) return n;int[] dp= new int[n+1];dp[1]=1;dp[2]=2;for(int i=3;i<=n;i++){dp[i]=dp[i-1]+dp[i-2];}return dp[n];}
}

746. 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 

本题要求花费最少,那么有两个要注意的思路:

  • 尽可能多到达花费数少的台阶
  • 尽可能少花钱,也就意味着用更少的次数到达顶层。

从示例2可以看出,每次到达花费为1的台阶花费最少。

并且题设还给出了可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于一开始到下标 0或者下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  1. 确定dp数组以及下标的含义:dp[i]:爬到第i层的费用
  2. 确定递推公式:和上一题爬楼梯一样,上到i-1层时花费dp[i-1],那么一次走一个台阶,上到第i层时需要花费dp[i]=dp[i-1]+cost[i-1],或者上i-2层时花费dp[i-2]个方法,那么一次走两个台阶,上到第i层时需要花费dp[i]=dp[i-2]+cost[i-2],所以从i-1还是i-2出发,取决于在这两个台阶时,所需花费最少的,因此dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])
  3. dp数组如何初始化:dp[0]=0, dp[1]=0;
  4. 确定遍历顺序:从前向后
  5. 举例推导dp数组:本题需要具体情况具体分析

本题还要注意楼层下标是从0开始的,因此顶楼是第cost.lenth层,所以返回和遍历的时候也要算上这一层

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[cost.length+1];dp[0]=0;dp[1]=0;for(int i=2; i<=cost.length;i++){ //这里注意是要小于等于,因为需要计算的是顶部n,而花费的长度直到n-1dp[i]=Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);}return dp[cost.length];}
}

这篇关于Leetcoder Day34| 动态规划part01的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767018

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Vue3中的动态组件详解

《Vue3中的动态组件详解》本文介绍了Vue3中的动态组件,通过`component:is=动态组件名或组件对象/component`来实现根据条件动态渲染不同的组件,此外,还提到了使用`markRa... 目录vue3动态组件动态组件的基本使用第一种写法第二种写法性能优化解决方法总结Vue3动态组件动态

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后