Leetcoder Day34| 动态规划part01

2024-03-02 18:20

本文主要是介绍Leetcoder Day34| 动态规划part01,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划理论基础

什么是动态规划

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划的每一个状态一定是从上一个状态推导出来的,这一点有别于贪心算法,贪心是从局部直接选择最优,不需要推导。

比如背包问题:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

贪心算法思路:每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

动态规划思路:dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

动态规划的解题步骤

一共有五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

要先确定递推公式,然后在考虑初始化,因为一些情况是递推公式决定了dp数组如何初始化。

动态规划应该如何debug

写动规题目,代码出问题很正常!

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

一些同学对于dp的学习是黑盒的状态,就是不清楚dp数组的含义,不懂为什么这么初始化,递推公式背下来了,遍历顺序靠习惯就是这么写的,然后一鼓作气写出代码,如果代码能通过万事大吉,通过不了的话就凭感觉改一改。这是一个很不好的习惯!

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了。

可以自己先思考这三个问题:

  • 这道题目我举例推导状态转移公式了么?
  • 我打印dp数组的日志了么?
  • 打印出来了dp数组和我想的一样么?

509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

  • 输入:3
  • 输出:2
  • 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

按照动态规划5部曲:

  1. 确定dp数组(dp table)以及下标的含义:第i个数的斐波那契数值是dp[i]
  2. 确定递推公式:题目中已经给出,dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:题目中把如何初始化也直接给我们了:dp[0] = 0;dp[1] = 1;
  4. 确定遍历顺序:dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
  5. 举例推导dp数组:0 1 1 2 3 5 当n=5
class Solution {        public int fib(int n) {if(n<2) return n;int[] dp= new int[n+1];dp[0]=0;dp[1]=1;for(int i=2;i<=n;i++){dp[i]=dp[i-1]+dp[i-2];}return dp[n];}
}

70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    • 1 阶 + 1 阶
    • 2 阶

示例 2:

  • 输入: 3
  • 输出: 3
  • 解释: 有三种方法可以爬到楼顶。
    • 1 阶 + 1 阶 + 1 阶
    • 1 阶 + 2 阶
    • 2 阶 + 1 阶

本题爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

  1. 确定dp数组(dp table)以及下标的含义:dp[i]:爬到第i层有dp[i]种方法
  2. 确定递推公式:上i-1层时有dp[i-1]个方法,那么一次走一个台阶,上到第i层时有dp[i]种方法,或者上i-2层时有dp[i-2]个方法,那么一次走两个台阶,上到第i层时有dp[i]种方法。所以此时dp[i]=dp[i-1]+dp[i-2]
  3. dp数组如何初始化:i=1时,dp[1]=1,i=2时,dp[2]=2
  4. 确定遍历顺序:从前向后
  5. 举例推导dp数组:i=5时 1 2 3 5 8
class Solution {/**确定dp数组(dp table)以及下标的含义:dp[i]:爬到第i层有dp[i]种方法确定递推公式:上i-1层时有dp[i-1]个方法,那么一次走一个台阶,上到第i层时有dp[i]种方法,或者上i-2层时有dp[i-2]个方法,那么一次走两个台阶,上到第i层时有dp[i]种方法dp数组如何初始化:i=1时,dp[1]=1,i=2时,dp[2]=2确定遍历顺序:从前向后举例推导dp数组:i=5时 1 2 3 5 8*/public int climbStairs(int n) {if(n<3) return n;int[] dp= new int[n+1];dp[1]=1;dp[2]=2;for(int i=3;i<=n;i++){dp[i]=dp[i-1]+dp[i-2];}return dp[n];}
}

746. 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 

本题要求花费最少,那么有两个要注意的思路:

  • 尽可能多到达花费数少的台阶
  • 尽可能少花钱,也就意味着用更少的次数到达顶层。

从示例2可以看出,每次到达花费为1的台阶花费最少。

并且题设还给出了可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于一开始到下标 0或者下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  1. 确定dp数组以及下标的含义:dp[i]:爬到第i层的费用
  2. 确定递推公式:和上一题爬楼梯一样,上到i-1层时花费dp[i-1],那么一次走一个台阶,上到第i层时需要花费dp[i]=dp[i-1]+cost[i-1],或者上i-2层时花费dp[i-2]个方法,那么一次走两个台阶,上到第i层时需要花费dp[i]=dp[i-2]+cost[i-2],所以从i-1还是i-2出发,取决于在这两个台阶时,所需花费最少的,因此dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])
  3. dp数组如何初始化:dp[0]=0, dp[1]=0;
  4. 确定遍历顺序:从前向后
  5. 举例推导dp数组:本题需要具体情况具体分析

本题还要注意楼层下标是从0开始的,因此顶楼是第cost.lenth层,所以返回和遍历的时候也要算上这一层

class Solution {public int minCostClimbingStairs(int[] cost) {int[] dp = new int[cost.length+1];dp[0]=0;dp[1]=0;for(int i=2; i<=cost.length;i++){ //这里注意是要小于等于,因为需要计算的是顶部n,而花费的长度直到n-1dp[i]=Math.min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);}return dp[cost.length];}
}

这篇关于Leetcoder Day34| 动态规划part01的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/767018

相关文章

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Java使用POI-TL和JFreeChart动态生成Word报告

《Java使用POI-TL和JFreeChart动态生成Word报告》本文介绍了使用POI-TL和JFreeChart生成包含动态数据和图表的Word报告的方法,并分享了实际开发中的踩坑经验,通过代码... 目录前言一、需求背景二、方案分析三、 POI-TL + JFreeChart 实现3.1 Maven

Java导出Excel动态表头的示例详解

《Java导出Excel动态表头的示例详解》这篇文章主要为大家详细介绍了Java导出Excel动态表头的相关知识,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录前言一、效果展示二、代码实现1.固定头实体类2.动态头实现3.导出动态头前言本文只记录大致思路以及做法,代码不进

vue基于ElementUI动态设置表格高度的3种方法

《vue基于ElementUI动态设置表格高度的3种方法》ElementUI+vue动态设置表格高度的几种方法,抛砖引玉,还有其它方法动态设置表格高度,大家可以开动脑筋... 方法一、css + js的形式这个方法需要在表格外层设置一个div,原理是将表格的高度设置成外层div的高度,所以外层的div需要

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节