Pytorch实例----CAFAR10数据集分类(ResNet)

2024-03-02 16:20

本文主要是介绍Pytorch实例----CAFAR10数据集分类(ResNet),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇 Pytorch实例----CAFAR10数据集分类(VGG)的识别统计,本篇主要调整Net()类,设计ResNet网络(+BN),实现对CAFAR10分类数据集的分类任务。

ResNet网络结构编程实现:

#create residual block
class ResidualBlock(nn.Module):def __init__(self, inchannel, outchannel, stride=1):super(ResidualBlock, self).__init__()#define conv2d -> BN -> ReLU -> BNself.left = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU(inplace=True),nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(outchannel))#define shortcutself.shortcut = nn.Sequential()if stride != 1 or inchannel != outchannel:self.shortcut = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(outchannel))def forward(self, x):out = self.left(x)out += self.shortcut(x)out = F.relu(out)return outclass ResNet(nn.Module):def __init__(self, ResidualBlock, num_classes=10):super(ResNet, self).__init__()self.inchannel = 64self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(),)#use make_layer to append residual blockself.layer1 = self.make_layer(ResidualBlock, 64,  2, stride=1)self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)self.fc = nn.Linear(512, num_classes)#define use nn.Sequential to create block or stagedef make_layer(self, block, channels, num_blocks, stride):strides = [stride] + [1] * (num_blocks - 1)   #strides=[1,1]layers = []for stride in strides:layers.append(block(self.inchannel, channels, stride))self.inchannel = channelsreturn nn.Sequential(*layers)def forward(self, x):out = self.conv1(x)out = self.layer1(out)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = F.avg_pool2d(out, 4)out = out.view(out.size(0), -1)out = self.fc(out)return outdef ResNet18():return ResNet(ResidualBlock)
#instance for ResNet18
#net = ResNet18()

整体代码实现:

import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms
from torchvision import modelsimport matplotlib.pyplot as plt
import numpy as npdef imshow(img):img = img / 2 + 0.5np_img = img.numpy()plt.imshow(np.transpose(np_img, (1, 2, 0)))
#define Parameter for data
BATCH_SIZE = 4
EPOCH = 4
#define transform
#hint: Normalize(mean, var) to normalize RGB
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
#define trainloader
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)
#define testloader
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)
#define class
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')#create residual block
class ResidualBlock(nn.Module):def __init__(self, inchannel, outchannel, stride=1):super(ResidualBlock, self).__init__()#define conv2d -> BN -> ReLU -> BNself.left = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU(inplace=True),nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(outchannel))#define shortcutself.shortcut = nn.Sequential()if stride != 1 or inchannel != outchannel:self.shortcut = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(outchannel))def forward(self, x):out = self.left(x)out += self.shortcut(x)out = F.relu(out)return outclass ResNet(nn.Module):def __init__(self, ResidualBlock, num_classes=10):super(ResNet, self).__init__()self.inchannel = 64self.conv1 = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(),)#use make_layer to append residual blockself.layer1 = self.make_layer(ResidualBlock, 64,  2, stride=1)self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)self.fc = nn.Linear(512, num_classes)#define use nn.Sequential to create block or stagedef make_layer(self, block, channels, num_blocks, stride):strides = [stride] + [1] * (num_blocks - 1)   #strides=[1,1]layers = []for stride in strides:layers.append(block(self.inchannel, channels, stride))self.inchannel = channelsreturn nn.Sequential(*layers)def forward(self, x):out = self.conv1(x)out = self.layer1(out)out = self.layer2(out)out = self.layer3(out)out = self.layer4(out)out = F.avg_pool2d(out, 4)out = out.view(out.size(0), -1)out = self.fc(out)return outdef ResNet18():return ResNet(ResidualBlock)net = ResNet18()
if torch.cuda.is_available():net.cuda()
print(net)
#define loss
cost = nn.CrossEntropyLoss()
#define optimizer
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)print('start')
#iteration for training
#setting for epoch
for epoch in range(EPOCH):running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = datainputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())optimizer.zero_grad()outputs = net(inputs)loss = cost(outputs, labels)loss.backward()optimizer.step()#print loss resultrunning_loss += loss.item()if i % 2000 == 1999:print('[%d, %5d]  loss: %.3f'%(epoch + 1, i + 1, running_loss / 2000))running_loss = 0.001
print('done')#get random image and label
dataiter = iter(testloader)
images, labels = dataiter.next()
#imshow(torchvision.utils.make_grid(images))
print('groundTruth: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))#get the predict result
outputs = net(Variable(images.cuda()))
_, pred = torch.max(outputs.data, 1)
print('prediction: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))#test the whole result
correct = 0.0
total = 0
for data in testloader:images, labels = dataoutputs = net(Variable(images.cuda()))_, pred = torch.max(outputs.data, 1)total += labels.size(0)correct += (pred == labels.cuda()).sum()
print('average Accuracy: %d %%' %(100*correct / total))#list each class prediction
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:images, labels = dataoutputs = net(Variable(images.cuda()))_, pred = torch.max(outputs.data, 1)c = (pred == labels.cuda()).squeeze()for i in range(4):label = labels[i]class_correct[label] += float(c[i])class_total[label] += 1
print('each class accuracy: \n')
for i in range(10):print('Accuracy: %6s %2d %%' %(classes[i], 100 * class_correct[i] / class_total[i]))

实验结果:

【注】:随着算力的提升,这里更改了相对较高的training EPOCH, 统计结果如下:

 248
Loss0.748(0.789)0.4550.152
Acc74%(71%)79%81%

括号表示epoch为2时VGG网络对应的loss和Accuracy,可以看到,随着EPOCH的提升,Loss仍在下降,Accuracy继续提升,当epoch为8时,比VGG提升了10个百分点,表明将残差信息传递给下一级网络能有效避免过拟合和训练困难的问题,在目标检测中,RetinNet及以RetinNet为backbone的网络结构同样采用了该想法,实现了较好的检测效果。

practice makes perfect !

github source code : https://github.com/GinkgoX/CAFAR10_Classification_Task/blob/master/CAFAR10_ResNet.ipynb

这篇关于Pytorch实例----CAFAR10数据集分类(ResNet)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766726

相关文章

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA