sklearn初探(五):自行实现朴素贝叶斯

2024-03-02 15:18

本文主要是介绍sklearn初探(五):自行实现朴素贝叶斯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

sklearn初探(五):自行实现朴素贝叶斯

前言

严格上说,这个与sklearn关系不大,不过既然都是预测问题,归于这个系列也无伤大雅。这次我实现一个朴素贝叶斯学习算法(上一篇文章中的贝叶斯是高斯分布的,与这个有点区别)。数据集链接及完整源代码在文末给出。

概述

朴素贝叶斯方法是基于贝叶斯定理的一组有监督学习算法,即“简单”地假设每对特征之间相互独立。 给定一个类别 y y y和一个从 x 1 x_1 x1 x n x_n xn的相关的特征向量, 贝叶斯定理阐述了以下关系:
在这里插入图片描述
使用简单(naive)的假设-每对特征之间都相互独立:
在这里插入图片描述
对于所有的 :i 都成立,这个关系式可以简化为
在这里插入图片描述
由于在给定的输入中 P ( x 1 , . . . , x n ) P(x_1,...,x_n) P(x1,...,xn)是一个常量,我们使用下面的分类规则:
在这里插入图片描述
我们可以使用最大后验概率(Maximum A Posteriori, MAP) 来估计 P ( y ) P(y) P(y) P ( x i ∣ y ) P(x_i|y) P(xiy) ; 前者是训练集中类别 y y y 的相对频率。
各种各样的的朴素贝叶斯分类器的差异大部分来自于处理 P ( x i ∣ y ) P(x_i|y) P(xiy)分布时的所做的假设不同。
尽管其假设过于简单,在很多实际情况下,朴素贝叶斯工作得很好,特别是文档分类和垃圾邮件过滤。这些工作都要求 一个小的训练集来估计必需参数。(至于为什么朴素贝叶斯表现得好的理论原因和它适用于哪些类型的数据,请参见下面的参考。)
相比于其他更复杂的方法,朴素贝叶斯学习器和分类器非常快。 分类条件分布的解耦意味着可以独立单独地把每个特征视为一维分布来估计。这样反过来有助于缓解维度灾难带来的问题。
另一方面,尽管朴素贝叶斯被认为是一种相当不错的分类器,但却不是好的估计器(estimator),所以不能太过于重视从 predict_proba 输出的概率。

参考资料:

  • H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

思路

将正例与反例各平均分为十份,然后每次各取九份为训练集,剩下的为测试集。

数据分割

还是用pandas

bank_data = pd.read_csv("../datas/train_set.csv")
marital_set = list(bank_data['marital'])
education_set = list(bank_data['education'])
default_set = list(bank_data['default'])
housing_set = list(bank_data['housing'])
y_set = list(bank_data['y'])
data_set = []

为了后续处理方便,这里将dataframe类型全部转为list

生成测试集与训练集

# divide the data set
train_set = []
test_set = []
base1 = int(i*(yes_count/10))
base2 = int((i+1)*(yes_count/10))
base3 = yes_count + int(i*(no_count/10))
base4 = yes_count + int((i+1)*(no_count/10))
for j in range(0, base1):train_set.append(data_set[j])
for j in range(base1, base2):test_set.append(data_set[j])
if base2 < yes_count:for j in range(base2, yes_count):train_set.append(data_set[j])
for j in range(yes_count, base3):train_set.append(data_set[j])
for j in range(base3, base4):test_set.append(data_set[j])
if base4 < yes_count+no_count:for j in range(base4, yes_count+no_count):train_set.append(data_set[j])

朴素贝叶斯概率计算并统计命中数

for k in test_set:yes_mar = 0yes_edu = 0yes_def = 0yes_hsg = 0no_mar = 0no_edu = 0no_def = 0no_hsg = 0for t in train_set:if t[-1] == 0:  # noif t[0] == k[0]:no_mar += 1if t[1] == k[1]:no_edu += 1if t[2] == k[2]:no_def += 1if t[3] == k[3]:no_hsg += 1else:  # yesif t[0] == k[0]:yes_mar += 1if t[1] == k[1]:yes_edu += 1if t[2] == k[2]:yes_def += 1if t[3] == k[3]:yes_hsg += 1p_yes = yes_mar/tmp_yes_count*yes_edu/tmp_yes_count*yes_def/tmp_yes_count*yes_hsg/tmp_yes_count*P_yes# print(p_yes)p_no = no_mar/tmp_no_count*no_edu/tmp_no_count*no_def/tmp_no_count*no_hsg/tmp_no_count*P_no# print(p_no)if p_yes > p_no:if k[-1] == 1:predict += 1else:if k[-1] == 0:predict += 1

评分

# print(predict)
score = predict/test_len
print(score)
with open("../output/scoresOfMyBayes.txt", "a") as sob:sob.write("The score of test "+str(i)+" is "+str(score)+'\n')

最后得分高的吓人,有八次命中率100%,看来喂数据很重要。

源代码

import pandas as pdbank_data = pd.read_csv("../datas/train_set.csv")
marital_set = list(bank_data['marital'])
education_set = list(bank_data['education'])
default_set = list(bank_data['default'])
housing_set = list(bank_data['housing'])
y_set = list(bank_data['y'])
data_set = []
for i in range(0, len(marital_set)):tmp = [marital_set[i], education_set[i], default_set[i], housing_set[i], y_set[i]]data_set.append(tmp)
label_set = bank_data['y']
label_set = list(label_set)
yes_count = 0
for i in label_set:if i == 1:yes_count += 1
no_count = len(marital_set)-yes_count
# 10-means cross validate
for i in range(0, 10):# divide the data settrain_set = []test_set = []base1 = int(i*(yes_count/10))base2 = int((i+1)*(yes_count/10))base3 = yes_count + int(i*(no_count/10))base4 = yes_count + int((i+1)*(no_count/10))for j in range(0, base1):train_set.append(data_set[j])for j in range(base1, base2):test_set.append(data_set[j])if base2 < yes_count:for j in range(base2, yes_count):train_set.append(data_set[j])for j in range(yes_count, base3):train_set.append(data_set[j])for j in range(base3, base4):test_set.append(data_set[j])if base4 < yes_count+no_count:for j in range(base4, yes_count+no_count):train_set.append(data_set[j])# calculate beginstrain_len = len(train_set)test_len = len(test_set)print(test_len)print(test_set)print(train_set)tmp_no_count = 0tmp_yes_count = 0for j in train_set:if j[-1] == 0:tmp_no_count += 1else:tmp_yes_count += 1P_yes = tmp_yes_count/train_lenP_no = tmp_no_count/train_lenpredict = 0for k in test_set:yes_mar = 0yes_edu = 0yes_def = 0yes_hsg = 0no_mar = 0no_edu = 0no_def = 0no_hsg = 0for t in train_set:if t[-1] == 0:  # noif t[0] == k[0]:no_mar += 1if t[1] == k[1]:no_edu += 1if t[2] == k[2]:no_def += 1if t[3] == k[3]:no_hsg += 1else:  # yesif t[0] == k[0]:yes_mar += 1if t[1] == k[1]:yes_edu += 1if t[2] == k[2]:yes_def += 1if t[3] == k[3]:yes_hsg += 1p_yes = yes_mar/tmp_yes_count*yes_edu/tmp_yes_count*yes_def/tmp_yes_count*yes_hsg/tmp_yes_count*P_yes# print(p_yes)p_no = no_mar/tmp_no_count*no_edu/tmp_no_count*no_def/tmp_no_count*no_hsg/tmp_no_count*P_no# print(p_no)if p_yes > p_no:if k[-1] == 1:predict += 1else:if k[-1] == 0:predict += 1# print(predict)score = predict/test_lenprint(score)with open("../output/scoresOfMyBayes.txt", "a") as sob:sob.write("The score of test "+str(i)+" is "+str(score)+'\n')

数据集

https://download.csdn.net/download/swy_swy_swy/12407045

这篇关于sklearn初探(五):自行实现朴素贝叶斯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/766552

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J