面经分享|面了好未来NLP算法岗(实习),经历坎坷但值了!

2024-03-02 11:12

本文主要是介绍面经分享|面了好未来NLP算法岗(实习),经历坎坷但值了!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何备战、面试常考点分享等热门话题进行了深入的讨论。

今天我分享一位小伙伴,今年成功找到实习机会,面试题整理后分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以加入我们。


自我介绍

今年某985研二,本文章主要记录了本小菜研找实习的坎坷历程。

1. 自我介绍

在自我介绍环节,我清晰地阐述了个人基本信息、教育背景、工作经历和技能特长,展示了自信和沟通能力。

2. 技术问题

2.1 lora的矩阵怎么初始化?为什么要初始化为全0?

初始化时,矩阵 A 随机高斯初始化,矩阵 B 初始化为0。之所以要这样初始化的原因是,在初始阶段这两个矩阵相乘为0,可以保证在初始阶段时,只有左边的主干生效。然后 BA 还会乘以一个缩放因子 a/r, a 也由我们自己指定。

训练的时候,预训练的权重矩阵全部都是冻结的。

2.2 gpt源码past_key_value是干啥的?

在GPT(Generative Pre-trained Transformer)中,past_key_value是用于存储先前层的注意力权重的结构。在进行推理时,过去的注意力权重可以被重复使用,避免重复计算,提高效率。

2.3 gpt onebyone 每一层怎么输入输出?

在GPT One-by-One中,每一层的输入是上一层的输出。具体而言,输入是一个序列的嵌入表示(通常是词嵌入),并通过自注意力机制和前馈神经网络进行处理,得到输出序列的表示。

2.4 模型输出的分布比较稀疏,怎么处理?

可以采用一些方法来处理模型输出的分布稀疏,例如使用softmax函数的温度参数调节来平滑输出分布,或者引入正则化技术,如Dropout,以减少模型对特定类别的过度依赖。

2.5 kl散度的公式和kl散度与交叉熵的区别?

KL(Kullback-Leibler)散度衡量了两个概率分布之间的差异。其公式为:

KL散度指的是相对熵,KL散度是两个概率分布P和Q差别的非对称性的度量。KL散度越小表示两个分布越接近。也就是说KL散度是不对称的,且KL散度的值是非负数。(也就是熵和交叉熵的差)

2.6 介绍一下 文本embedding方法?

文本嵌入(Text Embedding)是一种将自然语言文本数据转换为连续向量空间中稠密向量的技术,在这个向量空间中,语义相似的词或文本片段会拥有相近的向量表示。这种技术是现代自然语言处理(NLP)中的基石,它使得计算机可以理解和处理文本数据,并将其应用到诸如分类、聚类、检索、翻译、问答等多种下游任务。

以下是一些常见的文本嵌入方法:

  1. Word2Vec

    • 包括CBOW(Continuous Bag-of-Words)和Skip-gram两种模型,由Google在2013年提出。它们通过神经网络学习词语与其上下文之间的关系,生成固定长度的词向量。
  2. GloVe

    • GloVe(Global Vectors for Word Representation),由斯坦福大学提出,该方法基于全局词频统计信息构建词共现矩阵,通过优化目标函数直接学习每个词的向量表示,使得词向量的点积近似于它们在语料库中的共现概率。
  3. FastText

    • 由Facebook AI Research开发,FastText在Word2Vec的基础上增加了对字符级n-grams的考虑,尤其适合处理形态丰富的低资源语言以及未登录词的表示问题。
  4. Paragraph Vector (Doc2Vec)

    • 可以扩展到句子和段落级别,除了学习单词向量外,还学习一个额外的“文档向量”,能够捕获较长文本整体的语义特征。
  5. Transformer-based Embeddings

    • 随着Transformer架构的出现,如BERT(Bidirectional Encoder Representations from Transformers)、GPT(Generative Pretrained Transformer)及其后续版本,预训练语言模型进一步提升了文本嵌入的质量。这些模型在大量无标签文本上进行自监督训练,得到的词嵌入包含了丰富的上下文信息。
  6. ELMo

    • ELMo(Embeddings from Language Models)利用双向LSTM的语言模型上下文敏感地计算词向量,词的表示取决于其在句子中的具体上下文。
  7. Sentence-BERT (SBERT)

    对BERT等Transformer模型进行微调,使其可以直接生成句子级别的嵌入,特别适用于句子对齐、相似度计算等任务。

    通过这些文本嵌入技术,原本离散的文本数据得以转化为具有数学性质的向量表达,从而可以在机器学习和深度学习算法中更高效地处理和分析。随着技术的发展,新的嵌入方法不断涌现,且越来越适应大规模多语言和跨模态的应用场景。

2.7 chatgpt的reward model怎么来的,三阶段?

ChatGPT模型的训练过程中,确实涉及到了一个基于人类反馈强化学习(Reinforcement Learning from Human Feedback, RLHF)的三阶段过程。以下是这个过程的一个概述:

  1. 预训练(Pre-training)阶段
  • 在这个阶段,GPT模型通过无监督学习的方式在大规模文本数据集上进行训练。该模型的目标是预测下一个词语给定前面的词语序列,从而学习语言模型的基本结构和模式。
  1. 奖励模型训练(Reward Model Training)阶段
  • 预训练后的模型会被用于生成大量针对各种提示的回答。

  • 这些生成的回答会由人工标注员进行评估,并给出好坏或满意度得分,形成一个带有质量评分的数据集。

  • 基于这些人工标注的数据,训练一个奖励模型(Reward Model),该模型可以预测对于任何给定的输入和输出对,人类用户可能给予多大的满意程度分数。

  • 通过这种方式,奖励模型能够理解并量化哪些类型的回答更符合人类期望的标准。

  1. 强化学习微调(Fine-tuning with Reinforcement Learning)阶段
  • 使用训练好的奖励模型作为指导信号,将预训练模型与强化学习算法结合,对模型进行微调(fine-tuning)。

  • 模型现在以强化学习的方式进一步训练,目标是在生成响应时最大化来自奖励模型的预期奖励,也就是得到更高的满意度分数。

  • 通过迭代优化,ChatGPT模型逐渐学会根据上下文生成更加准确、有用且合乎伦理道德的回答。

最终,经过这三阶段训练流程,ChatGPT不仅具备了强大的语言生成能力,还能够更好地理解和适应人类对话的需求,提供更为高质量的人工智能交互体验。

3. Leetcode 题

287. 寻找重复数
  • 题目内容

给定一个包含 n + 1 个整数的数组 nums ,其数字都在 [1, n] 范围内(包括 1 和 n),可知至少存在一个重复的整数。

假设 nums 只有 一个重复的整数 ,返回 这个重复的数 。

你设计的解决方案必须 不修改 数组 nums 且只用常量级 O(1) 的额外空间。

示例 1:

输入:nums = [1,3,4,2,2]
输出:2

示例 2:

输入:nums = [3,1,3,4,2]
输出:3
  • 代码实现
class Solution:def findDuplicate1(self, nums: List[int]) -> int:''' 方法一:排序法解析:包含 n + 1 个整数的数组 nums ,其数字都在 [1, n] 范围内(包括 1 和 n),也就是排序之后,第一个值不等于 位置索引的 数 为 重复数'''nums = sorted(nums)i = 1while i < len(nums):if nums[i] == nums[i-1]:return nums[i]i = i + 1def findDuplicate2(self, nums: List[int]) -> int:''' 方法二:位运算法'''nums = sorted(nums)i = 1while i < len(nums):print(nums[i] ^ nums[i-1])if nums[i] ^ nums[i-1]==0:return nums[i]i = i + 1def findDuplicate3(self, nums: List[int]) -> int:''' 方法三:快慢指针法解析:存在相同值,也就表示 快慢指针 会 相遇'''slow = 0fast = 0while 1:slow = nums[slow]fast = nums[nums[fast]]if slow==fast:fast = 0while 1:if slow==fast:return slowslow = nums[slow]fast = nums[fast]def findDuplicate(self, nums: List[int]) -> int:'''方法四:哈希表法'''dic = set()for num in nums:if num not in dic:dic.add(num)else:return num

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流

用通俗易懂方式讲解系列

  • 用通俗易懂的方式讲解:自然语言处理初学者指南(附1000页的PPT讲解)
  • 用通俗易懂的方式讲解:1.6万字全面掌握 BERT
  • 用通俗易懂的方式讲解:NLP 这样学习才是正确路线
  • 用通俗易懂的方式讲解:28张图全解深度学习知识!
  • 用通俗易懂的方式讲解:不用再找了,这就是 NLP 方向最全面试题库
  • 用通俗易懂的方式讲解:实体关系抽取入门教程
  • 用通俗易懂的方式讲解:灵魂 20 问帮你彻底搞定Transformer
  • 用通俗易懂的方式讲解:图解 Transformer 架构
  • 用通俗易懂的方式讲解:大模型算法面经指南(附答案)
  • 用通俗易懂的方式讲解:十分钟部署清华 ChatGLM-6B,实测效果超预期
  • 用通俗易懂的方式讲解:内容讲解+代码案例,轻松掌握大模型应用框架 LangChain
  • 用通俗易懂的方式讲解:如何用大语言模型构建一个知识问答系统
  • 用通俗易懂的方式讲解:最全的大模型 RAG 技术概览
  • 用通俗易懂的方式讲解:利用 LangChain 和 Neo4j 向量索引,构建一个RAG应用程序
  • 用通俗易懂的方式讲解:使用 Neo4j 和 LangChain 集成非结构化知识图增强 QA
  • 用通俗易懂的方式讲解:面了 5 家知名企业的NLP算法岗(大模型方向),被考倒了。。。。。
  • 用通俗易懂的方式讲解:NLP 算法实习岗,对我后续找工作太重要了!。
  • 用通俗易懂的方式讲解:理想汽车大模型算法工程师面试,被问的瑟瑟发抖。。。。
  • 用通俗易懂的方式讲解:基于 Langchain-Chatchat,我搭建了一个本地知识库问答系统
  • 用通俗易懂的方式讲解:面试字节大模型算法岗(实习)
  • 用通俗易懂的方式讲解:大模型算法岗(含实习)最走心的总结
  • 用通俗易懂的方式讲解:大模型微调方法汇总

这篇关于面经分享|面了好未来NLP算法岗(实习),经历坎坷但值了!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/765921

相关文章

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

10个Python自动化办公的脚本分享

《10个Python自动化办公的脚本分享》在日常办公中,我们常常会被繁琐、重复的任务占据大量时间,本文为大家分享了10个实用的Python自动化办公案例及源码,希望对大家有所帮助... 目录1. 批量处理 Excel 文件2. 自动发送邮件3. 批量重命名文件4. 数据清洗5. 生成 PPT6. 自动化测试

10个Python Excel自动化脚本分享

《10个PythonExcel自动化脚本分享》在数据处理和分析的过程中,Excel文件是我们日常工作中常见的格式,本文将分享10个实用的Excel自动化脚本,希望可以帮助大家更轻松地掌握这些技能... 目录1. Excel单元格批量填充2. 设置行高与列宽3. 根据条件删除行4. 创建新的Excel工作表5

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck