本文主要是介绍HDU1811 Rank of Tetris 拓扑排序+并查集 OR 差分约束最短路+并查集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接
题意:就是给你一堆关系,看能不能排出个确定的顺序
做法:
1. 拓扑排序+并查集
应该很容易想到的一种思路,大于小于建立单向边。对于相等的呢,就把他们缩成一个点。就用并查集缩成一个点就行了
- 入度为0进队列,队列数目>1,有冲突
- 没有遍历完,信息不完整
- 不然,输出OK
//#pragma comment (linker, "/STACK:102400000,102400000")
#include<bits/stdc++.h>
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<set>
#include<stack>
#include<vector>
#include<map>
#include<queue>
#include<list>
#include<time.h>
#define myself i,l,r
#define lson i<<1
#define rson i<<1|1
#define Lson i<<1,l,mid
#define Rson i<<1|1,mid+1,r
#define half (l+r)/2
#define lowbit(x) x&(-x)
#define min4(a, b, c, d) min(min(a,b),min(c,d))
#define min3(x, y, z) min(min(x,y),z)
#define max3(x, y, z) max(max(x,y),z)
#define max4(a, b, c, d) max(max(a,b),max(c,d))
//freopen("E://1.in","r",stdin);
//freopen("E://1.out","w",stdout);
typedef unsigned long long ull;
typedef long long ll;
#define pii make_pair
#define pr pair<int,int>
const int inff = 0x3f3f3f3f;
const int dir[4][2] = {0, 1, 0, -1, 1, 0, -1, 0};
const int mdir[8][2] = {0, 1, 0, -1, 1, 0, -1, 0, 1, 1, -1, 1, 1, -1, -1, -1};
const double eps = 1e-10;
const double PI = acos(-1.0);
const double E = 2.718281828459;
using namespace std;
const long long inFF = 9223372036854775807;
const int mod=1e9+7;
const int maxn=1e5+5;
struct nod
{int x,y;
}a[maxn];
vector<int> v[maxn];
int n,m;
int f[maxn],in[maxn];
int find(int x)
{return x==f[x]?x:f[x]=find(f[x]);
}
void init()
{for(int i=0;i<=n;i++) f[i]=i;for(int i=0;i<=n;i++) v[i].clear(),in[i]=0;
}
int main()
{while(cin>>n>>m){if(m==0) {if (n == 0 || n == 1) puts("OK");else puts("UNCERTAIN");continue;}int cnt=0;int x,y;char s[2];init();for(int i=1;i<=m;i++){scanf("%d%s%d",&x,s,&y);if(s[0]=='='){x=find(x);y=find(y);if(x!=y) f[x]=y;}else if(s[0]=='>') a[++cnt]=nod{x,y};else a[++cnt]=nod{y,x};}int fg=0;for(int i=1;i<=cnt;i++){int x=find(a[i].x);int y=find(a[i].y);if(x==y){fg=1;break;}v[x].push_back(y);in[y]++;}queue<int> q;int num=0,d=0;for(int i=0;i<n;i++){if(find(i)==i){d++;if(in[i]==0) q.push(i);}}if(fg) {puts("CONFLICT");continue;}while(!q.empty()){if(q.size()>1) fg=1;//信息不足int u=q.front();q.pop();num++;for(int x:v[u]){in[x]--;if(in[x]==0)q.push(x);}}if(num!=d) puts("CONFLICT");else if(fg==1) puts("UNCERTAIN");else puts("OK");}
}
2.差分约束最短路+并查集
因为上边所述的关系属于差分约束条件,考虑用差分约束来搞。
怎么构造差分直接跳——>点我,用并查集来判断是否有没有信息不完整
造完图后就是一个最短路判环
如果有负环,冲突
如果
//#pragma comment (linker, "/STACK:102400000,102400000")
#include<bits/stdc++.h>
#include<stdio.h>
#include<string.h>
#include<string>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<set>
#include<stack>
#include<vector>
#include<map>
#include<queue>
#include<list>
#include<time.h>
#define myself i,l,r
#define lson i<<1
#define rson i<<1|1
#define Lson i<<1,l,mid
#define Rson i<<1|1,mid+1,r
#define half (l+r)/2
#define lowbit(x) x&(-x)
#define min4(a, b, c, d) min(min(a,b),min(c,d))
#define min3(x, y, z) min(min(x,y),z)
#define max3(x, y, z) max(max(x,y),z)
#define max4(a, b, c, d) max(max(a,b),max(c,d))
//freopen("E://1.in","r",stdin);
//freopen("E://1.out","w",stdout);
typedef unsigned long long ull;
typedef long long ll;
#define pii make_pair
#define pr pair<int,int>
const int inff = 0x3f3f3f3f;
const int dir[4][2] = {0, 1, 0, -1, 1, 0, -1, 0};
const int mdir[8][2] = {0, 1, 0, -1, 1, 0, -1, 0, 1, 1, -1, 1, 1, -1, -1, -1};
const double eps = 1e-10;
const double PI = acos(-1.0);
const double E = 2.718281828459;
using namespace std;
const long long inFF = 9223372036854775807;
const int mod=1e9+7;
const int maxn=1e5+5;
int d[maxn],vis[maxn],f[maxn],cnt[maxn];
int head[maxn],sign;
struct node
{int to,p,val;
}edge[maxn];
int n,m,fg;
void init()
{for(int i=0;i<=n;i++){f[i]=i;head[i]=-1;cnt[i]=0;}sign=0;
}
void add(int u,int v,int val)
{edge[sign]=node{v,head[u],val};head[u]=sign++;
}
int find(int x)
{return x==f[x]?x:f[x]=find(f[x]);
}
void meger(int x,int y)
{int fx=find(x);int fy=find(y);if(fx!=fy)f[x]=y;//x->y 有一点疑惑,不知道为什么这么合并,但是确实能判断信息是否完整
}
void spfa()
{for(int i=0;i<=n;i++) d[i]=inff,vis[i]=0,cnt[i]=0;d[0]=0;queue<int> q;q.push(0);while(!q.empty()){int u=q.front();q.pop();vis[u]=0;for(int i=head[u];~i;i=edge[i].p){int v=edge[i].to;if(d[v]>edge[i].val+d[u]){d[v]=edge[i].val+d[u];if(!vis[v]){vis[v]=1;if(++cnt[v]>n){cout<<"CONFLICT"<<endl;return ;}q.push(v);}}}}if(fg) cout<<"UNCERTAIN"<<endl;else cout<<"OK"<<endl;
}
int main()
{while(cin>>n>>m){int x,y;char ch;init();for(int i=1;i<=m;i++){scanf("%d %c %d",&x,&ch,&y);x++,y++;meger(x,y);if(ch=='=') add(y,x,0),add(x,y,0);else if(ch=='>') add(x,y,-1);else if(ch=='<') add(y,x,-1);}for(int i=1;i<=n;i++) add(0,i,0);int sum=0;fg=0;for(int i=1;i<=n;i++)if(i==find(i)) sum++;if(sum>1) fg=1;spfa();}
}
这篇关于HDU1811 Rank of Tetris 拓扑排序+并查集 OR 差分约束最短路+并查集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!