Python实现EMV工具判断信号:股票技术分析的工具系列(2)

2024-03-02 07:28

本文主要是介绍Python实现EMV工具判断信号:股票技术分析的工具系列(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python实现EMV工具判断信号:股票技术分析的工具系列(2)

    • 介绍
      • 算法解释:
        • 优势:
        • 劣势:
    • 代码
      • rolling函数介绍
      • 核心代码
        • 计算 EMV
    • 完整代码


介绍

先看看官方介绍:

EMV(简易波动指标)
用法
1.EMV 由下往上穿越0 轴时,视为中期买进信号;
2.EMV 由上往下穿越0 轴时,视为中期卖出信号;
3.EMV 的平均线穿越0 轴,产生假信号的机会较少;
4.当ADX 低于±DI时,本指标失去效用;
5.须长期使用EMV指标才能获得最佳利润。

算法解释:

VOLUME:=MA(VOL,N)/VOL;
MID:=100*(HIGH+LOW-REF(HIGH+LOW,1))/(HIGH+LOW);
EMV:MA(MID*VOLUME*(HIGH-LOW)/MA(HIGH-LOW,N),N);
MAEMV:MA(EMV,M);
优势:
优势描述
清晰的信号EMV提供了明确的买入和卖出信号,当指标由下往上穿越0轴时,视为中期买进信号,由上往下穿越0轴时,视为中期卖出信号,使投资者能够更容易地进行决策。
较少的假信号EMV的平均线穿越0轴时,产生假信号的机会较少,这增加了指标的可靠性,帮助投资者避免不必要的交易。
相对简单EMV指标相对简单,易于理解和应用,对于初学者或喜欢简单交易策略的投资者来说,是一种较为友好的指标。
劣势:
劣势描述
依赖其他指标当ADX低于±DI时,EMV指标失去效用,因此投资者在使用EMV指标时可能需要结合其他指标进行综合分析,降低失误的风险。
单一性即使EMV提供了明确的买卖信号,但它仍然是一种单一的指标,可能无法完全覆盖市场的全部信息,投资者仍需谨慎考虑其他因素。
需长期使用虽然提到了须长期使用EMV指标才能获得最佳利润,但这也意味着需要一定的时间来验证该指标的有效性,对于短期交易者可能不够实用。

代码

rolling函数介绍

rolling 函数通常与其他函数(如 meansumstd 等)一起使用,以计算滚动统计量,例如滚动均值、滚动总和等。

以下是 rolling 函数的基本语法:

DataFrame.rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)
  • window: 用于计算统计量的窗口大小。
  • min_periods: 每个窗口最少需要的非空观测值数量。
  • center: 确定窗口是否居中,默认为 False
  • win_type: 窗口类型,例如 Noneboxcartriang 等,默认为 None
  • on: 在数据帧中执行滚动操作的列,默认为 None,表示对整个数据帧执行操作。
  • axis: 执行滚动操作的轴,默认为 0,表示按列执行操作。
  • closed: 确定窗口的哪一端是闭合的,默认为 None

核心代码

计算 EMV

EMV(简易波动指标)是一种用于中期买卖信号的技术指标,通过观察其与0轴的交叉以及平均线的运动,提供清晰的交易信号。

def calculate_EMV(v_df, n, m):"""计算EMV指标参数:v_df: pandas.DataFrame,包含股票数据的DataFramen: int,窗口大小m: int,平滑窗口大小返回:无,结果直接存储在输入的DataFrame中"""# 计算VOLUMEv_df['MA_VOL'] = v_df['VOL'].rolling(window=n).mean()v_df['VOLUME'] = v_df['MA_VOL'] / v_df['VOL']# 计算MIDv_df['MID'] = 100 * (v_df['HIGH'] + v_df['LOW'] - v_df['HIGH'].shift(1) - v_df['LOW'].shift(1)) / (v_df['HIGH'] + v_df['LOW'])# 计算EMVv_df['HL_MA'] = v_df['HIGH'] - v_df['LOW']v_df['MA_HL'] = v_df['HL_MA'].rolling(window=n).mean()v_df['EMV'] = v_df['MID'] * v_df['VOLUME'] * v_df['HL_MA'] / v_df['MA_HL']v_df['EMV'] = v_df['EMV'].rolling(window=n).mean()# 计算MAEMVv_df['MAEMV'] = v_df['EMV'].rolling(window=m).mean()

完整代码

这里完整代码中的data部分,阔以通过下面资源文件下载,或者留下邮箱等发送。:

https://download.csdn.net/download/qq_36051316/88896567

在这里插入图片描述

import pandas as pd
import stock_datadata = {'DATE': stock_data.DATE,'CLOSE': stock_data.CLOSE,'HIGH': stock_data.HIGH,'LOW': stock_data.LOW,'OPEN': stock_data.OPEN,'CHANGE': stock_data.CHANGE,'VOL': stock_data.VOL,'CAPITAL': stock_data.CAPITAL
}df = pd.DataFrame(data)def check_signal(v_df, day_index=-1):"""检查信号参数:v_df: pandas.DataFrame,包含EMV指标的DataFrameday_index: int,要检查的日期索引,默认为最后一天返回:str,表示信号的字符串,可能为"买入信号"、"卖出信号"或"无信号""""latest_data = v_df['EMV'].iloc[day_index]latest_data2 = v_df['EMV'].iloc[-1 + day_index]signal = "无信号"if latest_data > 0 >= latest_data2:signal = "买入信号"elif latest_data < 0 <= latest_data2:signal = "卖出信号"return signaldef calculate_EMV(v_df, n, m):"""计算EMV指标参数:v_df: pandas.DataFrame,包含股票数据的DataFramen: int,窗口大小m: int,平滑窗口大小返回:无,结果直接存储在输入的DataFrame中"""# 计算VOLUMEv_df['MA_VOL'] = v_df['VOL'].rolling(window=n).mean()v_df['VOLUME'] = v_df['MA_VOL'] / v_df['VOL']# 计算MIDv_df['MID'] = 100 * (v_df['HIGH'] + v_df['LOW'] - v_df['HIGH'].shift(1) - v_df['LOW'].shift(1)) / (v_df['HIGH'] + v_df['LOW'])# 计算EMVv_df['HL_MA'] = v_df['HIGH'] - v_df['LOW']v_df['MA_HL'] = v_df['HL_MA'].rolling(window=n).mean()v_df['EMV'] = v_df['MID'] * v_df['VOLUME'] * v_df['HL_MA'] / v_df['MA_HL']v_df['EMV'] = v_df['EMV'].rolling(window=n).mean()# 计算MAEMVv_df['MAEMV'] = v_df['EMV'].rolling(window=m).mean()N = 14
M = 9calculate_EMV(df, N, M)# 输出信号
latest_signal = check_signal(df, -1)
print(latest_signal)

在这里插入图片描述

这篇关于Python实现EMV工具判断信号:股票技术分析的工具系列(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/765350

相关文章

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.