Python实现MACD工具判断信号:股票技术分析的工具系列(1)

2024-03-02 07:20

本文主要是介绍Python实现MACD工具判断信号:股票技术分析的工具系列(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python实现MACD工具判断信号:股票技术分析的工具系列(1)

    • 介绍
    • 代码
      • rolling函数介绍
      • 核心代码
        • 计算指数移动平均值
        • 计算MACD指标
    • 完整代码


介绍

先看看官方介绍:

MACD (平滑异同平均线)
指标说明
DIF线:收盘价短期、长期指数平滑移动平均线间的差;
DEA线:DIF线的M日指数平滑移动平均线;
MACD线:DIF线与DEA线的差,彩色柱状线;
参数:SHORT(短期)、LONG(长期)、M 天数,一般为12、26、9。
用法
1.DIF、DEA均为正,DIF向上突破DEA,买入信号;
2.DIF、DEA均为负,DIF向下跌破DEA,卖出信号;
3.DEA线与K线发生背离,行情反转信号;
4.分析MACD柱状线,由红变绿(正变负),卖出信号;由绿变红,买入信号。

算法解释:


DIF:EMA(CLOSE,SHORT)-EMA(CLOSE,LONG);
DEA:EMA(DIF,MID);
MACD:(DIF-DEA)*2,COLORSTICK;

优势:

优势描述
趋势跟踪能力强MACD能够帮助识别市场的趋势方向,尤其是短期和长期趋势的转折点。通过观察DIF和DEA线的交叉,可以提供买入和卖出的时机。
清晰的信号MACD的交叉点和柱状线的变化提供了清晰的交易信号,使得投资者能够更容易地进行决策。
背离信号当DEA线与价格走势产生背离时,往往暗示着市场趋势即将发生变化,这为投资者提供了及时的行动信号。
柱状线变化反映市场动能MACD柱状线的颜色变化反映了市场的动能变化,红色代表正能量增强,绿色代表负能量增强,这有助于投资者了解市场情绪和力量的变化。

劣势:

劣势描述
滞后性MACD是一种滞后指标,它基于移动平均线的计算,因此在市场趋势发生变化之后才会发出信号,有时可能会错过市场的最佳买入或卖出时机。
假信号由于MACD的计算方式,有时会出现假信号,即在市场波动较大或横盘震荡时,可能会产生交叉但并未发生实际的趋势转折。
单一性MACD虽然能够提供趋势判断和交易信号,但它并不能完全覆盖市场的全部信息,投资者在使用时仍需要结合其他指标和技术分析方法进行综合判断。

代码

rolling函数介绍

rolling 函数通常与其他函数(如 meansumstd 等)一起使用,以计算滚动统计量,例如滚动均值、滚动总和等。

以下是 rolling 函数的基本语法:

DataFrame.rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)
  • window: 用于计算统计量的窗口大小。
  • min_periods: 每个窗口最少需要的非空观测值数量。
  • center: 确定窗口是否居中,默认为 False
  • win_type: 窗口类型,例如 Noneboxcartriang 等,默认为 None
  • on: 在数据帧中执行滚动操作的列,默认为 None,表示对整个数据帧执行操作。
  • axis: 执行滚动操作的轴,默认为 0,表示按列执行操作。
  • closed: 确定窗口的哪一端是闭合的,默认为 None

核心代码

计算指数移动平均值

计算指数移动平均值是一种技术分析方法,用于平滑数据序列并识别趋势,通过赋予最新数据更高的权重,以更快地反映市场变化。

def EMA(data, window):"""计算指数移动平均值参数:data: pandas.Series,输入数据window: int,窗口大小返回:pandas.Series,指数移动平均值"""return data.ewm(span=window, min_periods=window, adjust=False).mean()
计算MACD指标

MACD指标(Moving Average Convergence Divergence)是一种技术分析工具,通过计算两个移动平均线的差值,并将其绘制成柱状图,来帮助识别市场趋势的变化和买卖信号。

def MACD(close, short=12, long=26, mid=9):"""计算MACD指标参数:close: pandas.Series,收盘价数据short: int,短期EMA窗口大小,默认为12long: int,长期EMA窗口大小,默认为26mid: int,DEA线EMA窗口大小,默认为9返回:tuple,包含dif、dea、macd指标值的元组"""dif = EMA(close, short) - EMA(close, long)dea = EMA(dif, mid)macd = (dif - dea) * 2return dif, dea, macd

完整代码

这里完整代码中的data部分,阔以通过下面资源文件下载,或者留下邮箱等发送。:

https://download.csdn.net/download/qq_36051316/88896567

在这里插入图片描述

import pandas as pd
import stock_data# 将股票数据存储到字典中
data = {'DATE': stock_data.DATE,'CLOSE': stock_data.CLOSE,'HIGH': stock_data.HIGH,'LOW': stock_data.LOW,'OPEN': stock_data.OPEN,'CHANGE': stock_data.CHANGE,'VOL': stock_data.VOL,'CAPITAL': stock_data.CAPITAL
}# 创建DataFrame
df = pd.DataFrame(data)def EMA(data, window):"""计算指数移动平均值参数:data: pandas.Series,输入数据window: int,窗口大小返回:pandas.Series,指数移动平均值"""return data.ewm(span=window, min_periods=window, adjust=False).mean()def MACD(close, short=12, long=26, mid=9):"""计算MACD指标参数:close: pandas.Series,收盘价数据short: int,短期EMA窗口大小,默认为12long: int,长期EMA窗口大小,默认为26mid: int,DEA线EMA窗口大小,默认为9返回:tuple,包含dif、dea、macd指标值的元组"""dif = EMA(close, short) - EMA(close, long)dea = EMA(dif, mid)macd = (dif - dea) * 2return dif, dea, macddef c_one_m(close_prices):"""计算MACD指标的dif、dea、macd参数:close_prices: list,收盘价数据列表返回:tuple,包含dif、dea、macd指标值的元组"""short_window = 12long_window = 26mid_window = 9close_series = pd.Series(close_prices)return MACD(close_series, short_window, long_window, mid_window)def check_signal(v_df, day_index=-1):"""检查MACD信号参数:v_df: pandas.DataFrame,包含MACD指标的DataFrameday_index: int,要检查的日期索引,默认为最后一天返回:str,表示MACD信号的字符串,可能为"买入信号"、"卖出信号"或"无信号""""latest_data = v_df.iloc[day_index]if latest_data['dif'] > 0 and 0 < latest_data['dea'] < latest_data['dif']:signal = "买入信号"elif latest_data['dif'] < 0 and 0 > latest_data['dea'] > latest_data['dif']:signal = "卖出信号"else:signal = "无信号"return signal# 计算并添加MACD指标到DataFrame中
dif, dea, m = c_one_m(stock_data.CLOSE)
df['dif'] = dif
df['dea'] = dea
df['m'] = m# 输出信号
latest_signal = check_signal(df, -1)
print(latest_signal)

在这里插入图片描述

这篇关于Python实现MACD工具判断信号:股票技术分析的工具系列(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/765335

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr