G8-ACGAN理论

2024-03-02 03:20
文章标签 理论 g8 acgan

本文主要是介绍G8-ACGAN理论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 本文为🔗365天深度学习训练营 中的学习记录博客
 原作者:K同学啊|接辅导、项目定制

我的环境:

1.语言:python3.7

2.编译器:pycharm

3.深度学习框架Pytorch 1.8.0+cu111


 一、对比分析

前面的文章介绍了CGAN(条件生成对抗网络),本文的ACGAN,是在CGAN与SGAN基础上的扩展,通过对判别器进行改进实现了图像分类的功能。

原始GAN网络的功能比较简单:输入噪声数据,输出伪造图片。而后CGAN发现可以通过给GAN的生成器添加辅助信息(比如类别标签),来实现生成图片类别的精确控制。。

  SGAN鉴别器与原始GAN实现有很大不同。它接收3种输入:生成器生成的伪样本X*、训练数据集中无标签的真实样本X和有标签的真实样本X,y。 

  ACGAN是在CGAN基础上更近一步的改进,将判别器的功能扩展为判别真假以及类别区分,可以认为ACGAN的判别器多出一个分类的功能 。

 ACGAN的损失函数也分为了判别损失和分类损失两个部分,其中判别损失和CGAN并没有区别,形式如下:

比较新的损失函数如下:

上面的分类损失就是ACGAN的核心贡献了,对于真实图片Xreal和生成器伪造的图片Xfake,判别器(或者说判别器中的分类器)应该能够预测它所属的类别。 

二、网络结构方面(原文链接:https://blog.csdn.net/qq_35692819/article/details/106684339)

相同的是ACGAN和CGAN在生成器输入时候,噪音z都拼接了采集的labels。
不同的是,ACGAN在判别器输入时,真假数据集都没有拼接labels,labels只是用来在辅助分类器中作为target_labels。而CGAN的判别器输入,真假数据集都拼接了labels。
网络结构上,生成网络和鉴别网络的网络层不再是CGAN的全连接,而是ACGAN的深层卷积网络(这是在DCGAN开始引入的改变),卷积能够更好的提取图片的特征值,所有ACGAN生成的图片边缘更具有连续性,感觉更真实。

代码部分:
 

import argparse
import os
import numpy as npimport torchvision.transforms as transforms
from torchvision.utils import save_imagefrom torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variableimport torch.nn as nn
import torch# 创建用于存储生成图像的目录
os.makedirs("images", exist_ok=True)# 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="训练的总轮数")
parser.add_argument("--batch_size", type=int, default=64, help="每个批次的大小")
parser.add_argument("--lr", type=float, default=0.0002, help="Adam优化器的学习率")
parser.add_argument("--b1", type=float, default=0.5, help="Adam优化器的一阶动量衰减")
parser.add_argument("--b2", type=float, default=0.999, help="Adam优化器的二阶动量衰减")
parser.add_argument("--n_cpu", type=int, default=8, help="用于批次生成的CPU线程数")
parser.add_argument("--latent_dim", type=int, default=100, help="潜在空间的维度")
parser.add_argument("--n_classes", type=int, default=10, help="数据集的类别数")
parser.add_argument("--img_size", type=int, default=32, help="每个图像的尺寸")
parser.add_argument("--channels", type=int, default=1, help="图像通道数")
parser.add_argument("--sample_interval", type=int, default=400, help="图像采样间隔")
opt = parser.parse_args()
print(opt)# 检查是否支持GPU加速
cuda = True if torch.cuda.is_available() else False# 初始化神经网络权重的函数
def weights_init_normal(m):classname = m.__class__.__name__if classname.find("Conv") != -1:torch.nn.init.normal_(m.weight.data, 0.0, 0.02)elif classname.find("BatchNorm2d") != -1:torch.nn.init.normal_(m.weight.data, 1.0, 0.02)torch.nn.init.constant_(m.bias.data, 0.0)# 生成器网络类
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()# 为类别标签创建嵌入层self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim)# 计算上采样前的初始大小self.init_size = opt.img_size // 4  # Initial size before upsampling# 第一层线性层self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))# 卷积层块self.conv_blocks = nn.Sequential(nn.BatchNorm2d(128),nn.Upsample(scale_factor=2),nn.Conv2d(128, 128, 3, stride=1, padding=1),nn.BatchNorm2d(128, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Upsample(scale_factor=2),nn.Conv2d(128, 64, 3, stride=1, padding=1),nn.BatchNorm2d(64, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),nn.Tanh(),)def forward(self, noise, labels):# 将标签嵌入到噪声中gen_input = torch.mul(self.label_emb(labels), noise)# 通过第一层线性层out = self.l1(gen_input)# 重新整形为合适的形状out = out.view(out.shape[0], 128, self.init_size, self.init_size)# 通过卷积层块生成图像img = self.conv_blocks(out)return img# 判别器网络类
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()# 定义判别器块的函数def discriminator_block(in_filters, out_filters, bn=True):"""返回每个判别器块的层"""block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]if bn:block.append(nn.BatchNorm2d(out_filters, 0.8))return block# 判别器的卷积层块self.conv_blocks = nn.Sequential(*discriminator_block(opt.channels, 16, bn=False),*discriminator_block(16, 32),*discriminator_block(32, 64),*discriminator_block(64, 128),)# 下采样后图像的高度和宽度ds_size = opt.img_size // 2 ** 4# 输出层self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.n_classes), nn.Softmax())def forward(self, img):out = self.conv_blocks(img)out = out.view(out.shape[0], -1)validity = self.adv_layer(out)label = self.aux_layer(out)return validity, label# 损失函数
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()if cuda:generator.cuda()discriminator.cuda()adversarial_loss.cuda()auxiliary_loss.cuda()# 初始化权重
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)# 配置数据加载器
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(datasets.MNIST("../../data/mnist",train=True,download=True,transform=transforms.Compose([transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),),batch_size=opt.batch_size,shuffle=True,
)# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor# 保存生成图像的函数
def sample_image(n_row, batches_done):"""保存从0到n_classes的生成数字的图像网格"""# 采样噪声z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))# 为n行生成标签从0到n_classeslabels = np.array([num for _ in range(n_row) for num in range(n_row)])labels = Variable(LongTensor(labels))gen_imgs = generator(z, labels)save_image(gen_imgs.data, "images/%d.png" % batches_done, nrow=n_row, normalize=True)# ----------
# 训练
# ----------for epoch in range(opt.n_epochs):for i, (imgs, labels) in enumerate(dataloader):batch_size = imgs.shape[0]# 真实数据的标签valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)# 生成数据的标签fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)# 配置输入real_imgs = Variable(imgs.type(FloatTensor))labels = Variable(labels.type(LongTensor))# -----------------# 训练生成器# -----------------optimizer_G.zero_grad()# 采样噪声和标签作为生成器的输入z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))gen_labels = Variable(LongTensor(np.random.randint(0, opt.n_classes, batch_size)))# 生成一批图像gen_imgs = generator(z, gen_labels)# 损失度量生成器的欺骗判别器的能力validity, pred_label = discriminator(gen_imgs)g_loss = 0.5 * (adversarial_loss(validity, valid) + auxiliary_loss(pred_label, gen_labels))g_loss.backward()optimizer_G.step()# ---------------------# 训练判别器# ---------------------optimizer_D.zero_grad()# 真实图像的损失real_pred, real_aux = discriminator(real_imgs)d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2# 生成图像的损失fake_pred, fake_aux = discriminator(gen_imgs.detach())d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, gen_labels)) / 2# 判别器的总损失d_loss = (d_real_loss + d_fake_loss) / 2# 计算判别器的准确率pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)gt = np.concatenate([labels.data.cpu().numpy(), gen_labels.data.cpu().numpy()], axis=0)d_acc = np.mean(np.argmax(pred, axis=1) == gt)d_loss.backward()optimizer_D.step()print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item()))batches_done = epoch * len(dataloader) + iif batches_done % opt.sample_interval == 0:sample_image(n_row=10, batches_done=batches_done)

判别器

  1. def discriminator_block(in_filters, out_filters, bn=True):: 这是一个内部函数,用于定义判别器的卷积块。它接受输入的通道数 in_filters 和输出的通道数 out_filters,并返回一个卷积块的列表。

  2. self.conv_blocks = nn.Sequential(...):定义了判别器的卷积层块,它使用了 nn.Sequential 来组合多个卷积块。通过调用 discriminator_block 函数定义了四个卷积块,每个卷积块由一个卷积层、一个 LeakyReLU 激活函数和一个 Dropout2d 层组成。

  3. ds_size = opt.img_size // 2 ** 4:计算下采样后图像的高度和宽度。在这段代码中,每个卷积块都将输入图像的尺寸减半,共执行了 4 次这样的操作。

  4. self.adv_layer = nn.Sequential(...):定义了判别器的输出层。adv_layer 是用于判断图像真假的部分,它是一个全连接层,将卷积层块输出的特征展平后输入到一个 Sigmoid 激活函数中,以输出一个范围在 0 到 1 之间的值,表示图像的真实度。

  5. self.aux_layer = nn.Sequential(...):定义了判别器的辅助输出层。aux_layer 是用于对图像进行分类的部分,它也是一个全连接层,将卷积层块输出的特征展平后输入到一个 Softmax 激活函数中,以输出类别概率分布,其中 opt.n_classes 是类别的数量。

  6. def forward(self, img)::定义了前向传播函数。接收一个输入图像 img,将其输入到卷积层块中进行特征提取,然后将特征展平后分别输入到判别器的输出层 adv_layeraux_layer 中,得到判别器的输出:真假判别结果 validity 和图像类别预测结果 label

生成器 

  1. self.label_emb = nn.Embedding(opt.n_classes, opt.latent_dim): 创建了一个嵌入层 label_emb,用于将类别标签转换为一个与噪声相同维度的向量。这里假设 opt.n_classes 是类别的数量,opt.latent_dim 是噪声的维度。

  2. self.init_size = opt.img_size // 4: 计算了上采样前的初始大小。在这段代码中,初始大小是图像大小的 1/4。

  3. self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2)): 定义了一个线性层 l1,将噪声输入映射到一个特定大小的张量,以供后续卷积层块使用。

  4. self.conv_blocks = nn.Sequential(...):定义了生成器的卷积层块。通过 nn.Sequential 组合了多个层,包括批归一化层、上采样层、卷积层、LeakyReLU 激活函数和 Tanh 激活函数。这些层组合在一起,用于从输入的特征张量生成图像。

  5. def forward(self, noise, labels):: 定义了前向传播函数。接收噪声 noise 和类别标签 labels 作为输入,并经过一系列操作生成图像。首先,通过将标签嵌入到噪声中,将标签信息融合到生成的噪声中。然后,将融合后的输入通过线性层 l1,将其映射到适当的大小。接着,将线性层输出重塑为合适的形状,以适应后续的卷积层块。最后,通过卷积层块生成图像,并将生成的图像作为输出返回。

这篇关于G8-ACGAN理论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/764752

相关文章

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

系统架构师考试学习笔记第三篇——架构设计高级知识(19)嵌入式系统架构设计理论与实践

本章考点:         第19课时主要学习嵌入式系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分)。在历年考试中,案例题对该部分内容都有固定考查,综合知识选择题目中有固定分值的考查。本课时内容侧重于对知识点的记忆、理解和应用,按照以往的出题规律,嵌入式系统架构设计基础知识点基本来源于教材内。本课时知识架构如图19.1所示。 一、嵌入式系统发展历程

西方社会学理论教程复习重点

一.名词解释 1.社会静力学:旨在揭示人类社会的基本秩序。它从社会的横断面,静态的考察人类社会的结构和制度,寻找确立和维护人类社会的共存和秩序的原则。 2.社会动力学:纵观人类理性和人类社会发展的先后必要阶段,所叙述的是这一基本秩序在达到实证主义这一最终阶段之前所经过的曲折历程。 3.社会事实:一切行为方式,不论它是固定的还是不固定的,凡是能从外部给予个人以约束的,或者说是普遍存在于该社会各

行政组织理论-第十一章:创建学习型组织

章节章节汇总第一章:绪论第二章:行政组织的演变第三章:科层制行政组织理论第四章:人本主义组织理论第五章:网络型组织理论第六章:行政组织目标第七章:行政组织结构第八章:行政组织体制第九章:行政组织设置与自身管理第十章:组织激励第十一章:创建学习型组织第十二章:政府再造流程第十三章:行政组织变革 目录 第一节 学习型组织理论的产生1. 学习型组织的源起2. 学习型组织的定义3. 学习型组织与组

系统架构师考试学习笔记第三篇——架构设计高级知识(18)面向服务架构设计理论与实践

本章考点:         第18课时主要学习面向服务架构设计理论与实践。根据考试大纲,本课时知识点会涉及单选题型(约占2~5分)和案例题(25分),本课时内容偏重于方法的掌握和应用,根据以往全国计算机技术与软件专业技术资格(水平)考试的出题规律,概念知识的考查内容多数来源于实际应用,还需要灵活运用相关知识点。         本课时知识架构如图18.1所示。 一、SOA的相关概念 (

计算机操作员理论基础

计算机操作员理论基础 理论基础 计算机主频指的是时钟频率。14=23+22+21=(0)1110OS是运行其他系统软件的平台。215=27+26+24+22+21+20=(0)11010111(0)1111=(0)10000-1=24-1=15计算机理论知识,存贮是最基本是字节计算机产权在我国是受法律保护的12=23+22=(0)1100存贮程序是计算机能够自动连续工作的理论基础软盘中病毒

代码随想录算法训练营第十九天| 回溯理论、77. 组合、216. 组合总和Ⅲ、17. 电话号码的字母组合

今日内容 回溯的理论基础leetcode. 77 组合leetcode. 216 组合总和Ⅲleetcode. 17 电话号码的字母组合 回溯理论基础 回溯法也叫回溯搜索法,它是一种搜索的方式,而且只要有递归就会有回溯,回溯就是递归的副产品。 回溯说到底并不是什么非常高深的搜索方式,本质上仍然是穷举,穷举所有可能然后选择出我们要的答案。剪枝会使回溯法更加高效一点,但改变不了回溯本质就是穷举

分布式系统理论基础三-时间、时钟和事件顺序

GitHub:https://github.com/wangzhiwubigdata/God-Of-BigData 关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新50+篇~ 现实生活中时间是很重要的概念,时间可以记录事情发生的时刻、比较事情发生的先后顺序。分布式系统的一些场景也需要记录和比较不同

分布式系统理论基础二-CAP

GitHub:https://github.com/wangzhiwubigdata/God-Of-BigData 关注公众号,内推,面试,资源下载,关注更多大数据技术~大数据成神之路~预计更新500+篇文章,已经更新50+篇~ 引言 CAP是分布式系统、特别是分布式存储领域中被讨论最多的理论,“什么是CAP定理?”在Quora 分布式系统分类下排