TensorFlow 中的constant、variable、placeholder的比较

2024-03-01 11:58

本文主要是介绍TensorFlow 中的constant、variable、placeholder的比较,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先看看tensorflow的会话控制:

constant:

执行结果是123,有很多人说,为什么不直接print(constant)呢??还要这么麻烦!!

原因是print(constand)打印不出来!!!

因为tensorflow里面的数据被封装在一个叫做 tensor 的对象中,而不是以整数,浮点数或者字符串形式存在的。。Tensor是张量的意思,张量包含了0到任意维度的量,其中,0维的叫做常数,1维的叫做向量,二维叫做矩阵,多维度的就直接叫张量量。在 constant = tf.constant(123) 代码中,constant是一个 0 维度的字符串 tensor.

variable:

variable就是变量的意思,tf.Variable 主要用于一些可训练变量(trainable variables),例如模型权重(weight)或者偏差值(bias)。 tf.Variable 在声明变量时,必须提供初始值(tf.global_variables_initializer())。可以认为其声明的就是一个实参。名称的真是含义在于变量,换句话说变量的值会改变

placeholder:

placehold和feed_dict必须一起用,feed_dict用于传入数值,所谓"喂数据"

这篇关于TensorFlow 中的constant、variable、placeholder的比较的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/762378

相关文章

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

关键字synchronized、volatile的比较

关键字volatile是线程同步的轻量级实现,所以volatile性能肯定比synchronized要好,并且volatile只能修饰于变量,而synchronized可以修饰方法,以及代码块。随着JDK新版本的发布,synchronized关键字的执行效率上得到很大提升,在开发中使用synchronized关键字的比率还是比较大的。多线程访问volatile不会发生阻塞,而synchronize

stl的sort和手写快排的运行效率哪个比较高?

STL的sort必然要比你自己写的快排要快,因为你自己手写一个这么复杂的sort,那就太闲了。STL的sort是尽量让复杂度维持在O(N log N)的,因此就有了各种的Hybrid sort algorithm。 题主你提到的先quicksort到一定深度之后就转为heapsort,这种是introsort。 每种STL实现使用的算法各有不同,GNU Standard C++ Lib

研究生生涯中一些比较重要的网址

Mali GPU相关: 1.http://malideveloper.arm.com/resources/sdks/opengl-es-sdk-for-linux/ 2.http://malideveloper.arm.com/resources/tools/arm-development-studio-5/ 3.https://www.khronos.org/opengles/sdk/do

性能测试工具 wrk,ab,locust,Jmeter 压测结果比较

前言 在开发服务端软件时,经常需要进行性能测试,一般我采用手写性能测试代码的方式进行测试,那有什么现成的好的性能测试工具吗? 性能测试工具 wrk,ab,locust,Jmeter 压测结果比较 详见: 性能测试工具 wrk,ab,locust,Jmeter 压测结果比较 Jmeter性能测试 入门

win10不用anaconda安装tensorflow-cpu并导入pycharm

记录一下防止忘了 一、前提:已经安装了python3.6.4,想用tensorflow的包 二、在pycharm中File-Settings-Project Interpreter点“+”号导入很慢,所以直接在cmd中使用 pip install -i https://mirrors.aliyun.com/pypi/simple tensorflow-cpu下载好,默认下载的tensorflow

MongoDB学习—(6)MongoDB的find查询比较符

首先,先通过以下函数向BookList集合中插入10000条数据 function insertN(obj,n){var i=0;while(i<n){obj.insert({id:i,name:"bookNumber"+i,publishTime:i+2000})i++;}}var BookList=db.getCollection("BookList")调用函数,这样,BookList

超声波清洗机哪个品牌比较好一点的?清洁力强的超声波清洗机品牌

随着生活水平的不断提升和幸福感的增强,珠宝、饰品和眼镜等物品已成为许多家庭的常备之物。然而,这些贵重细小的物件易于积聚微尘与隐形细菌,长此以往可能悄悄影响家人的健康,毕竟细菌是肉眼难以察觉的隐患。超声波清洗机应运而生,它以高科技手段有效地解决了这一隐忧,深层清洁,守护家人免受微小污染物的潜在威胁。不过现在市面上超声波清洗机品牌挺多的,究竟有哪些品牌的超声波清洗机比较好一点呢?接下来就为大家带来四款

稀疏自编码器tensorflow

自编码器是一种无监督机器学习算法,通过计算自编码的输出与原输入的误差,不断调节自编码器的参数,最终训练出模型。自编码器可以用于压缩输入信息,提取有用的输入特征。如,[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]四比特信息可以压缩成两位,[0,0],[1,0],[1,1],[0,1]。此时,自编码器的中间层的神经元个数为2。但是,有时中间隐藏层的神经元

Tensorflow实现与门感知机

感知机是最简单的神经网络,通过输入,进行加权处理,经过刺激函数,得到输出。通过输出计算误差,调整权重,最终,得到合适的加权函数。 今天,我通过tensorflow实现简单的感知机。 首先,初始化变量:     num_nodes = 2     output_units = 1     w = tf.Variable(tf.truncated_normal([num_nodes,output