空间多边形顺逆时针的判断

2024-03-01 08:08

本文主要是介绍空间多边形顺逆时针的判断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在计算机图形学领域,对多边形的处理是必不可少的。我们有时候会遇到需要判断多边形的顺逆时针的问题,这里可以有个方法以供参考:

对于三维中的多边形,现考虑一个顶点的情况:

假设P0点是多边形上的一个顶点,与其前一个顶点构成向量V0(x0,y0,z0)(方向是前一个顶点指向P0),与其后一个顶点构成向量V1(x1,y1,z1)(方向是P0指向后一个顶点)。

V0和V1向量构成下面的行列式


计算上面行列式的值,若为正,逆时针;为负则是顺时针。而对于一般的简单多边形,则需对于多边形的每一个点计算上述值,如果正值比较多,是逆时针;负值较多则为顺时针。

对于二维中的多边形,则

考虑一个顶点的情况:

假设P0点是多边形上的一个顶点,与其前一个顶点构成向量V0(x0,y0)(方向是前一个顶点指向P0),与其后一个顶点构成向量V1(x1,y1)(方向是P0指向后一个顶点)。

V0和V1向量构成下面的行列式


计算上面行列式的值,若为正,逆时针;为负则是顺时针。而对于一般的简单多边形,则需对于多边形的每一个点计算上述值,如果正值比较多,是逆时针;负值较多则为顺时针。


如需示例代码:

致QQ:1039116048





这篇关于空间多边形顺逆时针的判断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761746

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

【408DS算法题】039进阶-判断图中路径是否存在

Index 题目分析实现总结 题目 对于给定的图G,设计函数实现判断G中是否含有从start结点到stop结点的路径。 分析实现 对于图的路径的存在性判断,有两种做法:(本文的实现均基于邻接矩阵存储方式的图) 1.图的BFS BFS的思路相对比较直观——从起始结点出发进行层次遍历,遍历过程中遇到结点i就表示存在路径start->i,故只需判断每个结点i是否就是stop

linux 判断某个命令是否安装

linux 判断某个命令是否安装 if ! [ -x "$(command -v git)" ]; thenecho 'Error: git is not installed.' >&2exit 1fi

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

win7系统中C盘空间缩水的有效处理方法

一、深度剖析和完美解决   1、 休眠文件 hiberfil.sys :   该文件在C盘根目录为隐藏的系统文件,隐藏的这个hiberfil.sys文件大小正好和自己的物理内存是一致的,当你让电脑进入休眠状态时,Windows 7在关闭系统前将所有的内存内容写入Hiberfil.sys文件。   而后,当你重新打开电脑,操作系统使用Hiberfil.sys把所有信息放回内存,电脑