论文Deep Autoencoder的框架(由CNN组成的VAE)

2024-03-01 03:58

本文主要是介绍论文Deep Autoencoder的框架(由CNN组成的VAE),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

autoencoder可以用于数据压缩、降维,预训练神经网络,生成数据等等。

autoencoder的架构

autoencoder的架构是这样的:

需要分别训练一个Encoder和一个Decoder。

比如,一张数字图片784维,放入Encoder进行压缩,编程code,通常要小于原来的784维;

然后可以将压缩后的code,放入Decoder进行reconsturct,产生和原来相似的图片。

Encoder和Decoder需要一起进行训练。

下面看看PCA对于数据的压缩:

输入同样是一张图片,通过选择W,找到数据的主特征向量,压缩图片得到code,然后使用W的转置,恢复图片。

我们知道,PCA对数据的降维是线性的(linear),恢复数据会有一定程度的失真。上面通过PCA恢复的图片也是比较模糊的。

所以,我们也可以把PCA理解成为一个线性的autoencoder,W就是encode的作用,w的转置就是decode的作用,最后的目的是decode的结果和原始图片越接近越好。

现在来看真正意义上的Deep Auto-encoder的结构。通常encoder每层对应的W和decoder每层对应的W不需要对称(转置)。

从上面可以看出,Auto-encoder产生的图片,比PCA还原的图片更加接近真实图片。

上面是使用PCA和autoencoder对于数字图片压缩后的可视化结果,明显autoencoder的区分度更高。

De-noising auto-encoder

为了让aotoencoder训练的更好,更加robust,我们在训练的时候加入一些noise,这就是De-noising auto-encoder。

examples

接下来再看两个例子。

文本检索,简单的词袋模型,将文本转化成词向量。

当搜索的词和文本向量角度越接近,就说明内容越相关。

将词向量放入autoencoder中进行压缩,得到code,内容相近的文本,code也越接近。

不同主题的文本被明显的分开,得到右上的2维图像。

搜索图片的相似性。

搜索红框中的迈克杰克逊的照片,下面是使用像素点之间的欧式距离得到的搜索结果。

下面使用autoencoder编码后的code,进行相似性的搜索结果。

 

 

使用CNN实现autoencoder

经过多次convolution和pooling后的code,可以再经过deconvolution和unpooling恢复。

下面将如何实现unpooling和deconvolution。

在maxpooling时,需要记住max值在图片中的位置。

当进行unpooling时,把小的图片做扩展,先把max值恢复到之前的位置,然后在之前进行maxpooling的field内的像素都置为0.

接下来看Deconvolution

现在假设一个field里面有3个像素点,每个filter的3个weight作用下得到一个output,如图左。

而deconvolution就是要让这3个output复原成原来那么多的点,一个output变成3各点,把重叠的点加起来,如图中。

现在,将3个output进行扩展,给扩展的点的值为0,然后就依然做convolution,还是可以得到和图中相同的结果。

所以,deconvolution其实就是convolution。

最后,我们可以使用autoencoder压缩后的code,输入到decoder里,得到一张新的图像,如下所示。

这篇关于论文Deep Autoencoder的框架(由CNN组成的VAE)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/761144

相关文章

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

ZooKeeper 中的 Curator 框架解析

Apache ZooKeeper 是一个为分布式应用提供一致性服务的软件。它提供了诸如配置管理、分布式同步、组服务等功能。在使用 ZooKeeper 时,Curator 是一个非常流行的客户端库,它简化了 ZooKeeper 的使用,提供了高级的抽象和丰富的工具。本文将详细介绍 Curator 框架,包括它的设计哲学、核心组件以及如何使用 Curator 来简化 ZooKeeper 的操作。 1