D. Rarity and New Dress(思维+动态规划)Codeforces Round #662 (Div. 2)

2024-02-29 12:50

本文主要是介绍D. Rarity and New Dress(思维+动态规划)Codeforces Round #662 (Div. 2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原题链接:https://codeforces.com/contest/1393/problem/D

题意:给定一个 n ∗ m n*m nm的字符矩阵,判断有多少个相同字符斜正方形。

解题思路:我们首先不管别的,对于每一个字符,它都能组成只有一个相同字符的斜正方形。那么其余的就是多种相同字符组合在一起形成的斜正方形了,怎么组合呢?我们不难发现。
在这里插入图片描述

仔细看这张图,在第一个图形中,若要构成这样的斜正方形,那么最下面的那个点一定要可以往上延伸。即判断当前位置[i][j]与上面四个位置([i-1][j]、[i-1][j-1]、[i-1][j+1]、[i-2][j])能否形成“斜正方形”,那么我们再看第二张图,从最下面那个点开始往上延伸,我们发现这些是有规律的,即是一个动态规划的过程,若我们设最下面那个点的方案数为dp[i][j],那么这个值本身就有一个1,就是自己单独形成一个字符,那么还有呢?就是可以和上面四个字符形成一个斜正方形或者更大,那么我只要它们字符都相等,不就满足了吗?那怎么写动态规划方程呢?我们就要知道这个点的方案数由哪几个点维护?就是由[i-1][j-1]、[i-1][j+1]、[i-2][j]这三个点维护,那你可能就会问呢?组合不是与四个点组合吗?为什么只要考虑三个点,因为不管怎样,在那三个点的维护下,最中间那个点已经被维护了,若三个点向上延伸也能组成一个斜正方形,那么你画一下图,最中间那个点根本不用考虑。所以我们就可以写出动态转移方程了,既然是由三个点维护,那肯定是要取三个点的最小值的。故:
dp[i][j]=min(min(dp[i-1)[j-1],dp[i-1][j+1],dp[i-2][j])+1//加上1是它自己本身就有一,我们也可以一开始就都初始化为1.我们具体看代码。

AC代码 :

/*
*邮箱:2825841950@qq.com
*blog:https://blog.csdn.net/hzf0701
*注:代码如有问题请私信我或在评论区留言,谢谢支持。
*/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
#include<stack>
#include<queue>
#include<cstring>
#include<map>
#include<iterator>
#include<list>
#include<set>
#include<functional>
#include<memory.h>//低版本G++编译器不支持,若使用这种G++编译器此段应注释掉
#include<iomanip>
#include<vector>
#include<cstring>
#define scd(n) scanf("%d",&n)
#define scf(n) scanf("%f",&n)
#define scc(n) scanf("%c",&n)
#define scs(n) scanf("%s",n)
#define prd(n) printf("%d",n)
#define prf(n) printf("%f",n)
#define prc(n) printf("%c",n)
#define prs(n) printf("%s",n)
#define rep(i,a,n) for (int i=a;i<=n;i++)//i为循环变量,a为初始值,n为界限值,递增
#define per(i,a,n) for (int i=a;i>=n;i--)//i为循环变量, a为初始值,n为界限值,递减。
#define pb push_back
#define fi first
#define se second
#define mp make_pair
using namespace std;
const int inf = 0x3f3f3f3f;//无穷大
const int maxn = 2e3+2;//最大值。
typedef long long ll;
typedef long double ld;
typedef pair<ll, ll>  pll;
typedef pair<int, int> pii;
//*******************************分割线,以上为代码自定义代码模板***************************************//char graph[maxn][maxn];//代表给定的矩阵。
ll dp[maxn][maxn];//dp[i][j]代表它的方案数。也为位置[i][j]向上能最多”延伸“的”斜正方形边长“
int n,m;//n行m列。
void solve(){int i,j;for(i=0;i<n;i++)cin>>graph[i];ll ans=0;//统计方案数。for(i=0;i<n;i++){for(j=0;j<m;j++){dp[i][j]=1;//每个点都有它自己一个人组成的方案数。//进行判断,是否可以增加,也就是延伸。 ,延伸分别是对上面四个位置延伸。先判断有没有越界。if(i>1&&j>0&&j<m-1&&graph[i][j]==graph[i-1][j]&&graph[i][j]==graph[i-2][j]&&graph[i][j]==graph[i-1][j-1]&&graph[i][j]==graph[i-1][j+1])dp[i][j]+=min(min(dp[i-1][j-1],dp[i-1][j+1]),dp[i-2][j]);ans+=dp[i][j];}}cout<<ans<<endl;
}
int main(){//freopen("in.txt", "r", stdin);//提交的时候要注释掉ios::sync_with_stdio(false);//打消iostream中输入输出缓存,节省时间。cin.tie(0); cout.tie(0);//可以通过tie(0)(0表示NULL)来解除cin与cout的绑定,进一步加快执行效率。while(cin>>n>>m){solve();}return 0;
}

这篇关于D. Rarity and New Dress(思维+动态规划)Codeforces Round #662 (Div. 2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758855

相关文章

SpringBoot实现动态插拔的AOP的完整案例

《SpringBoot实现动态插拔的AOP的完整案例》在现代软件开发中,面向切面编程(AOP)是一种非常重要的技术,能够有效实现日志记录、安全控制、性能监控等横切关注点的分离,在传统的AOP实现中,切... 目录引言一、AOP 概述1.1 什么是 AOP1.2 AOP 的典型应用场景1.3 为什么需要动态插

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

Golan中 new() 、 make() 和简短声明符的区别和使用

《Golan中new()、make()和简短声明符的区别和使用》Go语言中的new()、make()和简短声明符的区别和使用,new()用于分配内存并返回指针,make()用于初始化切片、映射... 详细介绍golang的new() 、 make() 和简短声明符的区别和使用。文章目录 `new()`

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同