【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN

2024-02-29 08:20

本文主要是介绍【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink SQL 语法篇(八):集合、Order By、Limit、TopN

  • 1.集合操作
  • 2.Order By、Limit 子句
    • 2.1 Order By 子句
    • 2.2 Limit 子句
  • 3.TopN 子句

1.集合操作

集合操作支持 Batch / Streaming 任务。

在这里插入图片描述

  • UNION:将集合合并并且去重。
  • UNION ALL:将集合合并,不做去重。
Flink SQL> create view t1(s) as values ('c'), ('a'), ('b'), ('b'), ('c');
Flink SQL> create view t2(s) as values ('d'), ('e'), ('a'), ('b'), ('b');Flink SQL> (SELECT s FROM t1) UNION (SELECT s FROM t2);
+---+
|  s|
+---+
|  c|
|  a|
|  b|
|  d|
|  e|
+---+Flink SQL> (SELECT s FROM t1) UNION ALL (SELECT s FROM t2);
+---+
|  c|
+---+
|  c|
|  a|
|  b|
|  b|
|  c|
|  d|
|  e|
|  a|
|  b|
|  b|
+---+
  • Intersect:交集并且去重。
  • Intersect ALL:交集不做去重。
Flink SQL> create view t1(s) as values ('c'), ('a'), ('b'), ('b'), ('c');
Flink SQL> create view t2(s) as values ('d'), ('e'), ('a'), ('b'), ('b');
Flink SQL> (SELECT s FROM t1) INTERSECT (SELECT s FROM t2);
+---+
|  s|
+---+
|  a|
|  b|
+---+Flink SQL> (SELECT s FROM t1) INTERSECT ALL (SELECT s FROM t2);
+---+
|  s|
+---+
|  a|
|  b|
|  b|
+---+
  • Except:差集并且去重。
  • Except ALL:差集不做去重。
Flink SQL> (SELECT s FROM t1) EXCEPT (SELECT s FROM t2);
+---+
| s |
+---+
| c |
+---+Flink SQL> (SELECT s FROM t1) EXCEPT ALL (SELECT s FROM t2);
+---+
| s |
+---+
| c |
| c |
+---+

上述 SQL 在流式任务中,如果一条左流数据先来了,没有从右流集合数据中找到对应的数据时会直接输出,当右流对应数据后续来了之后,会下发回撤流将之前的数据给撤回。这也是一个回撤流。

  • In 子查询:这个大家比较熟悉了,但是注意,In 子查询的结果集只能有一列。
SELECT user, amount
FROM Orders
WHERE product IN (SELECT product FROM NewProducts
)

上述 SQL 的 In 子句其实就和之前介绍到的 Inner Join 类似。并且 In 子查询也会涉及到大状态问题,大家注意设置 State 的 TTL。

2.Order By、Limit 子句

2.1 Order By 子句

支持 Batch / Streaming,但在实时任务中一般用的非常少。

实时任务中,Order By 子句中 必须要有时间属性字段,并且时间属性必须为 升序 时间属性,即 WATERMARK FOR rowtime_column AS rowtime_column - INTERVAL '0.001' SECOND 或者 WATERMARK FOR rowtime_column AS rowtime_column

举例:

CREATE TABLE source_table_1 (user_id BIGINT NOT NULL,row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),WATERMARK FOR row_time AS row_time
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.user_id.min' = '1','fields.user_id.max' = '10'
);CREATE TABLE sink_table (user_id BIGINT
) WITH ('connector' = 'print'
);INSERT INTO sink_table
SELECT user_id
FROM source_table_1
Order By row_time, user_id desc

2.2 Limit 子句

支持 Batch / Streaming,但实时场景一般不使用,但是此处依然举一个例子。

CREATE TABLE source_table_1 (user_id BIGINT NOT NULL,row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),WATERMARK FOR row_time AS row_time
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.user_id.min' = '1','fields.user_id.max' = '10'
);CREATE TABLE sink_table (user_id BIGINT
) WITH ('connector' = 'print'
);INSERT INTO sink_table
SELECT user_id
FROM source_table_1
Limit 3

结果如下,只有 3 条输出:

+I[5]
+I[9]
+I[4]

3.TopN 子句

TopN 定义(支持 Batch / Streaming):TopN 其实就是对应到离线数仓中的 row_number(),可以使用 row_number() 对某一个分组的数据进行排序。

应用场景:根据 某个排序 条件,计算 某个分组 下的排行榜数据。

SQL 语法标准:

SELECT [column_list]
FROM (SELECT [column_list],ROW_NUMBER() OVER ([PARTITION BY col1[, col2...]]ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownumFROM table_name)
WHERE rownum <= N [AND conditions]
  • ROW_NUMBER():标识 TopN 排序子句。
  • PARTITION BY col1[, col2...]:标识分区字段,代表按照这个 col 字段作为分区粒度对数据进行排序取 TopN,比如下述案例中的 partition by key,就是根据需求中的搜索关键词(key)做为分区。
  • ORDER BY col1 [asc|desc][, col2 [asc|desc]...]:标识 TopN 的排序规则,是按照哪些字段、顺序或逆序进行排序。
  • WHERE rownum <= N:这个子句是一定需要的,只有加上了这个子句,Flink 才能将其识别为一个 TopN 的查询,其中 N 代表 TopN 的条目数。
  • [AND conditions]:其他的限制条件也可以加上。

实际案例:取某个搜索关键词下的搜索热度前 10 名的词条数据。

输入数据为搜索词条数据的搜索热度数据,当搜索热度发生变化时,会将变化后的数据写入到数据源的 Kafka 中:

-- 数据源 schema-- 字段名         备注
-- key          搜索关键词
-- name         搜索热度名称
-- search_cnt    热搜消费热度(比如 3000)
-- timestamp       消费词条时间戳CREATE TABLE source_table (name BIGINT NOT NULL,search_cnt BIGINT NOT NULL,key BIGINT NOT NULL,row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),WATERMARK FOR row_time AS row_time
) WITH (...
);-- 数据汇 schema-- key          搜索关键词
-- name         搜索热度名称
-- search_cnt    热搜消费热度(比如 3000)
-- timestamp       消费词条时间戳CREATE TABLE sink_table (key BIGINT,name BIGINT,search_cnt BIGINT,`timestamp` TIMESTAMP(3)
) WITH (...
);-- DML 逻辑
INSERT INTO sink_table
SELECT key, name, search_cnt, row_time as `timestamp`
FROM (SELECT key, name, search_cnt, row_time, -- 根据热搜关键词 key 作为 partition key,然后按照 search_cnt 倒排取前 100 名ROW_NUMBER() OVER (PARTITION BY keyORDER BY search_cnt desc) AS rownumFROM source_table)
WHERE rownum <= 100

输出结果:

-D[关键词1, 词条1, 4944]
+I[关键词1, 词条1, 8670]
+I[关键词1, 词条2, 1735]
-D[关键词1, 词条3, 6641]
+I[关键词1, 词条3, 6928]
-D[关键词1, 词条4, 6312]
+I[关键词1, 词条4, 7287]

可以看到输出数据是有回撤数据的,为什么会出现回撤,我们来看看 SQL 语义。

上面的 SQL 会翻译成以下三个算子:

  • 数据源:数据源即最新的词条下面的搜索词的搜索热度数据,消费到 Kafka 中数据后,按照 partition key 将数据进行 Hash 分发到下游排序算子,相同的 Key 数据将会发送到一个并发中。
  • 排序算子:为每个 Key 维护了一个 TopN 的榜单数据,接受到上游的一条数据后,如果 TopN 榜单还没有到达 N 条,则将这条数据加入 TopN 榜单后,直接下发数据,如果到达 N 条之后,经过 TopN 计算,发现这条数据比原有的数据排序靠前,那么新的 TopN 排名就会有变化,就变化了的这部分数据之前下发的排名数据撤回(即回撤数据),然后下发新的排名数据。
  • 数据汇:接收到上游的数据之后,然后输出到外部存储引擎中。

上面三个算子也是会 24 小时一直运行的。

这篇关于【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758133

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da