数据结构13:哈夫曼树及编码

2024-02-29 03:30

本文主要是介绍数据结构13:哈夫曼树及编码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

哈夫曼树

路径:从树中一个结点到另一个结点之间的分支构成这两个结点间的路径

结点的路径长度:两结点间路径上的分支数。

树的路径长度:从树根到每一个结点的路径长度之和。

结点树目相同的二叉树中,完全二叉树是路径长度最短的二叉树

权:将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权

1结点的带权路径长度:从根结点到该结点之间的路径长度与该结点的权的乘积

树的带权路径长度:树中所有叶子节点的带权路径长度之和。

哈夫曼编码

在哈夫曼树的每个分支上标上0或1:

  1. 结点的左分支标0,右分支标。
  2. 把从根到每个叶子的路径上的标号连接起来,作为该叶子代表的字符的编码。

 

总代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>typedef double DataType; //结点权值的数据类型typedef struct HTNode //单个结点的信息
{DataType weight; //权值int parent; //父节点int lc, rc; //左右孩子
}*HuffmanTree;typedef char **HuffmanCode; //字符指针数组中存储的元素类型//在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值
void Select(HuffmanTree& HT, int n, int& s1, int& s2)
{int min;//找第一个最小值for (int i = 1; i <= n; i++){if (HT[i].parent == 0){min = i;break;}}for (int i = min + 1; i <= n; i++){if (HT[i].parent == 0 && HT[i].weight < HT[min].weight)min = i;}s1 = min; //第一个最小值给s1//找第二个最小值for (int i = 1; i <= n; i++){if (HT[i].parent == 0 && i != s1){min = i;break;}}for (int i = min + 1; i <= n; i++){if (HT[i].parent == 0 && HT[i].weight < HT[min].weight&&i != s1)min = i;}s2 = min; //第二个最小值给s2
}//构建哈夫曼树
void CreateHuff(HuffmanTree& HT, DataType* w, int n)
{int m = 2 * n - 1; //哈夫曼树总结点数HT = (HuffmanTree)calloc(m + 1, sizeof(HTNode)); //开m+1个HTNode,因为下标为0的HTNode不存储数据for (int i = 1; i <= n; i++){HT[i].weight = w[i - 1]; //赋权值给n个叶子结点}for (int i = n + 1; i <= m; i++) //构建哈夫曼树{//选择权值最小的s1和s2,生成它们的父结点int s1, s2;Select(HT, i - 1, s1, s2); //在下标为1到i-1的范围找到权值最小的两个值的下标,其中s1的权值小于s2的权值HT[i].weight = HT[s1].weight + HT[s2].weight; //i的权重是s1和s2的权重之和HT[s1].parent = i; //s1的父亲是iHT[s2].parent = i; //s2的父亲是iHT[i].lc = s1; //左孩子是s1HT[i].rc = s2; //右孩子是s2}//打印哈夫曼树中各结点之间的关系printf("哈夫曼树为:>\n");printf("下标   权值     父结点   左孩子   右孩子\n");printf("0                                  \n");for (int i = 1; i <= m; i++){printf("%-4d   %-6.2lf   %-6d   %-6d   %-6d\n", i, HT[i].weight, HT[i].parent, HT[i].lc, HT[i].rc);}printf("\n");
}//生成哈夫曼编码
void HuffCoding(HuffmanTree& HT, HuffmanCode& HC, int n)
{HC = (HuffmanCode)malloc(sizeof(char*)*(n + 1)); //开n+1个空间,因为下标为0的空间不用char* code = (char*)malloc(sizeof(char)*n); //辅助空间,编码最长为n(最长时,前n-1个用于存储数据,最后1个用于存放'\0')code[n - 1] = '\0'; //辅助空间最后一个位置为'\0'for (int i = 1; i <= n; i++){int start = n - 1; //每次生成数据的哈夫曼编码之前,先将start指针指向'\0'int c = i; //正在进行的第i个数据的编码int p = HT[c].parent; //找到该数据的父结点while (p) //直到父结点为0,即父结点为根结点时,停止{if (HT[p].lc == c) //如果该结点是其父结点的左孩子,则编码为0,否则为1code[--start] = '0';elsecode[--start] = '1';c = p; //继续往上进行编码p = HT[c].parent; //c的父结点}HC[i] = (char*)malloc(sizeof(char)*(n - start)); //开辟用于存储编码的内存空间strcpy(HC[i], &code[start]); //将编码拷贝到字符指针数组中的相应位置}free(code); //释放辅助空间
}//主函数
int main()
{int n = 0;printf("请输入数据个数:");scanf("%d", &n);DataType* w = (DataType*)malloc(sizeof(DataType)*n);if (w == NULL){printf("malloc fail\n");exit(-1);}printf("请输入数据:");for (int i = 0; i < n; i++){scanf("%lf", &w[i]);}HuffmanTree HT;CreateHuff(HT, w, n); //构建哈夫曼树HuffmanCode HC;HuffCoding(HT, HC, n); //构建哈夫曼编码for (int i = 1; i <= n; i++) //打印哈夫曼编码{printf("数据%.2lf的编码为:%s\n", HT[i].weight, HC[i]);}free(w);return 0;
}

运行结果

请输入数据个数:6
请输入数据:2 3 7 9 18 25
哈夫曼树为:>
下标   权值     父结点   左孩子   右孩子
0
1      2.00     7        0        0
2      3.00     7        0        0
3      7.00     8        0        0
4      9.00     9        0        0
5      18.00    10       0        0
6      25.00    11       0        0
7      5.00     8        1        2
8      12.00    9        7        3
9      21.00    10       4        8
10     39.00    11       5        9
11     64.00    0        6        10数据2.00的编码为:11100
数据3.00的编码为:11101
数据7.00的编码为:1111
数据9.00的编码为:110
数据18.00的编码为:10
数据25.00的编码为:0

 

这篇关于数据结构13:哈夫曼树及编码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/757446

相关文章

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

C++ | Leetcode C++题解之第393题UTF-8编码验证

题目: 题解: class Solution {public:static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num &

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

form表单提交编码的问题

浏览器在form提交后,会生成一个HTTP的头部信息"content-type",标准规定其形式为Content-type: application/x-www-form-urlencoded; charset=UTF-8        那么我们如果需要修改编码,不使用默认的,那么可以如下这样操作修改编码,来满足需求: hmtl代码:   <meta http-equiv="Conte

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

浙大数据结构:树的定义与操作

四种遍历 #include<iostream>#include<queue>using namespace std;typedef struct treenode *BinTree;typedef BinTree position;typedef int ElementType;struct treenode{ElementType data;BinTree left;BinTre

Python 内置的一些数据结构

文章目录 1. 列表 (List)2. 元组 (Tuple)3. 字典 (Dictionary)4. 集合 (Set)5. 字符串 (String) Python 提供了几种内置的数据结构来存储和操作数据,每种都有其独特的特点和用途。下面是一些常用的数据结构及其简要说明: 1. 列表 (List) 列表是一种可变的有序集合,可以存放任意类型的数据。列表中的元素可以通过索