后起之秀 | MySQL Binlog增量同步工具go-mysql-transfer实现详解

本文主要是介绍后起之秀 | MySQL Binlog增量同步工具go-mysql-transfer实现详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方蓝色字体,选择“设为星标

回复”资源“获取更多资源

一、 概述

工作需要研究了下阿里开源的MySQL Binlog增量订阅消费组件canal,其功能强大、运行稳定,但是有些方面不是太符合需求,主要有如下三点:

  1. 需要自己编写客户端来消费canal解析到的数据

  2. server-client模式,需要同时部署server和client两个组件,我们的项目中有6个业务数据库要实时同步到redis,意味着要多部署12个组件,硬件和运维成本都会增加。

  3. 从server端到client端需要经过一次网络传输和序列化反序列化操作,然后再同步到接收端,感觉没有直接怼到接收端更高效。

go-mysql-transfer是使用Go语言实现的MySQL数据库实时增量同步工具, 参考Canal但是规避了上述三点。旨在实现一个高性能、低延迟、简洁易用的Binlog增量数据同步管道, 具有如下特点:

  1. 不依赖其它组件,一键部署

  2. 集成多种接收端,如:Redis、MongoDB、Elasticsearch、RocketMQ、Kafka、RabbitMQ,不需要再编写客户端,开箱即用

  3. 内置丰富的数据解析、消息生成规则;支持Lua脚本,以处理更复杂的数据逻辑

  4. 支持监控告警,集成Prometheus客户端

  5. 高可用集群部署

  6. 数据同步失败重试

  7. 全量数据初始化

二、 与同类工具比较

三、 设计实现

1、实现原理

go-mysql-transfer将自己伪装成MySQL的Slave,向Master发送dump协议获取binlog,解析binlog并生成消息,实时发送给接收端。

2、数据转换规则

将从binlog解析出来的数据,经过简单的处理转换发送到接收端。使用内置丰富数数据转换规则,可完成大部分同步工作。

例如将表t_user同步到reids,配置如下规则:

rule:-schema: eseap #数据库名称table: t_user #表名称column_underscore_to_camel: true #列名称下划线转驼峰,默认为falsedatetime_formatter: yyyy-MM-dd HH:mm:ss #datetime、timestamp类型格式化,不填写默认yyyy-MM-dd HH:mm:ssvalue_encoder: json  #值编码类型,支持json、kv-commas、v-commasredis_structure: string # redis数据类型。支持string、hash、list、set类型(与redis的数据类型一致)redis_key_prefix: USER_ #key前缀redis_key_column: USER_NAME #使用哪个列的值作为key,不填写默认使用主键

t_user表,数据如下:

同步到Redis后,数据如下:

更多规则配置和同步案例 请见后续的"使用说明"章节。

3、数据转换脚本

Lua 是一种轻量小巧的脚本语言, 其设计目的是为了嵌入应用程序中,从而为应用程序提供灵活的扩展和定制功能。开发者只需要花费少量时间就能大致掌握Lua的语法,照虎画猫写出可用的脚本。

基于Lua的高扩展性,可以实现更为复杂的数据解析、消息生成逻辑,定制需要的数据格式。

使用方式:

rule:-schema: eseaptable: t_userlua_file_path: lua/t_user_string.lua   #lua脚本文件

示例脚本:

local json = require("json")    -- 加载json模块
local ops = require("redisOps") -- 加载redis操作模块local row = ops.rawRow()  --当前变动的一行数据,table类型,key为列名称
local action = ops.rawAction()  --当前数据库的操作事件,包括:insert、updare、deletelocal id = row["ID"] --获取ID列的值
local userName = row["USER_NAME"] --获取USER_NAME列的值
local key = "user_"..id -- 定义keyif action == "delete" -- 删除事件
thenops.DEL(key)  -- 删除KEY
else local password = row["PASSWORD"] --获取USER_NAME列的值local createTime = row["CREATE_TIME"] --获取CREATE_TIME列的值local result= {}  -- 定义结果result["id"] = idresult["userName"] = userNameresult["password"] = passwordresult["createTime"] = createTimeresult["source"] = "binlog" -- 数据来源local val = json.encode(result) -- 将result转为jsonops.SET(key,val)  -- 对应Redis的SET命令,第一个参数为key(string类型),第二个参数为value
end

t_user表,数据如下:

同步到Redis后,数据如下:

更多Lua脚本使用说明 和同步案例 请见后续的"使用说明"章节。

4、监控告警

Prometheus是流行开源监控报警系统和TSDB,其指标采集组件被称作exporter。go-mysql-transfer本身就是一个exporter。向Prometheus提供应用状态、接收端状态、insert数量、update数量、delete数量、delay延时等指标。

go-mysql-transfer内置Prometheus exporter可以监控系统的运行状况,并进行健康告警。

相关配置:

enable_exporter: true #启用prometheus exporter,默认false
exporter_addr: 9595 #prometheus exporter端口,默认9595

直接访问127.0.0.1:9595可以看到导出的指标值,如何与Prometheus集成,请参见Prometheus相关教程。

指标说明:transfer_leader_state:当前节点是否为leader,0=否、1=是 transfer_destination_state:接收端状态, 0=掉线、1=正常 transfer_inserted_num:插入数据的数量 transfer_updated_num:修改数据的数量 transfer_deleted_num:删除数据的数量 transfer_delay:与MySQL Master的时延

5、高可用

可以选择依赖zookeeper或者etcdr构建高可用集群,一个集群中只存在一个leader节点,其余皆为follower节点。只有leader节点响应binglog的dump事件,follower节点为蛰伏状态,不发送dump命令,因此多个follower也不会加重Master的负担。当leader节点出现故障,follower节点迅速替补上去,实现秒级故障切换。

相关配置:

cluster: # 集群配置name: myTransfer #集群名称,具有相同name的节点放入同一个集群# ZooKeeper地址,多个用逗号分隔zk_addrs: 192.168.1.10:2181,192.168.1.11:2182,192.168.1.12:2183#zk_authentication: 123456 #digest类型的访问秘钥,如:user:password,默认为空#etcd_addrs: 192.168.1.10:2379 #etcd连接地址,多个用逗号分隔#etcd_user: test #etcd用户名#etcd_password: 123456 #etcd密码

6、失败重试

网络抖动、接收方故障都会导致数据同步失败,需要有重试机制,才能保证不漏掉数据,使得每一条数据都能送达。

通常有两种重试实现方式,一种方式是记录下故障时刻binglog的position(位移),等故障恢复后,从position处重新dump 数据,发送给接收端。

一种方式是将同步失败的数据在本地落盘,形成队列。当探测到接收端可用时,逐条预出列尝试发送,发送成功最终出列。确保不丢数据,队列先进先出的特性也可保证数据顺序性,正确性。

go-mysql-transfer采用的是后者,目的是减少发送dump命令的次数,减轻Master的负担。因为binglog记录的整个Master数据库的日志,其增长速度很快。如果只需要拿几条数据,而dump很多数据,有点得不偿失。

7、全量数据初始化

如果数据库原本存在无法通过binlog进行增量同步的数据,可以使用命令行工具-stock完成始化同步。stock基于 SELECT * FROM {table}的方式分批查询出数据,根据规则或者Lua脚本生成指定格式的消息,批量发送到接收端。执行命令 go-mysql-transfer -stoc,在控制台可以直观的看到数据同步状态,如下:

四、安装

二进制安装包

直接下载编译好的安装包: https://github.com/wj596/go-mysql-transfer/releases

源码编译

1、依赖Golang 1.14 及以上版本 2、设置GO111MODULE=on 3、拉取源码 go get -d github.com/wj596/go-mysql-transfer 3、进入目录,执行 go build 编译

五、部署运行

开启MySQL的binlog

#Linux在my.cnf文件
#Windows在my.ini文件
log-bin=mysql-bin # 开启 binlog
binlog-format=ROW # 选择 ROW 模式
server_id=1 # 配置 MySQL replaction 需要定义,不要和 go-mysql-transfer 的 slave_id 重复

命令行运行 1、修改app.yml 2、Windows直接运行 go-mysql-transfer.exe 3、Linux执行 nohup go-mysql-transfer &

docker运行

1、拉取源码 go get -d github.com/wj596/go-mysql-transfer 2、修改配置文件 app.yml 中相关配置 3、构建镜像 docker image build -t go-mysql-transfer -f Dockerfile . 4、运行 docker run -d --name go-mysql-transfer -p 9595:9595 go-mysql-transfer:latest

六、性能测试

1、测试环境

平台:虚拟机 CPU:E7-4890 4核8线程 内存:8G 硬盘:机械硬盘 OS:Windows Sever 2012 R2 MySQL: 5.5 Rides: 4.0.2

2、测试数据

t_user表,14个字段,1个字段包含中文,数据量527206条

3、测试配置

规则:

    schema: eseaptable: t_userorder_by_column: id #排序字段,全量数据初始化时不能为空#column_lower_case:false #列名称转为小写,默认为false#column_upper_case:false#列名称转为大写,默认为falsecolumn_underscore_to_camel: true #列名称下划线转驼峰,默认为false# 包含的列,多值逗号分隔,如:id,name,age,area_id  为空时表示包含全部列#include_column: ID,USER_NAME,PASSWORDdate_formatter: yyyy-MM-dd #date类型格式化, 不填写默认yyyy-MM-dddatetime_formatter: yyyy-MM-dd HH:mm:ss #datetime、timestamp类型格式化,不填写默认yyyy-MM-dd HH:mm:ssvalue_encoder: json  #值编码,支持json、kv-commas、v-commasredis_structure: string # 数据类型。支持string、hash、list、set类型(与redis的数据类型一直)redis_key_prefix: USER_ #key的前缀redis_key_column: ID #使用哪个列的值作为key,不填写默认使用主键

脚本:

local json = require("json")    -- 加载json模块
local ops = require("redisOps") -- 加载redis操作模块local row = ops.rawRow()  --当前变动的一行数据,table类型,key为列名称
local action = ops.rawAction()  --当前数据库的操作事件,包括:insert、updare、deletelocal id = row["ID"] --获取ID列的值
local userName = row["USER_NAME"] --获取USER_NAME列的值
local key = "user_"..id -- 定义keyif action == "delete" -- 删除事件
thenops.DEL(key)  -- 删除KEY
else local password = row["PASSWORD"] --获取USER_NAME列的值local createTime = row["CREATE_TIME"] --获取CREATE_TIME列的值local result= {}  -- 定义结果result["id"] = idresult["userName"] = userNameresult["password"] = passwordresult["createTime"] = createTimeresult["source"] = "binlog" -- 数据来源local val = json.encode(result) -- 将result转为jsonops.SET(key,val)  -- 对应Redis的SET命令,第一个参数为key(string类型),第二个参数为value
end

3、测试用例一

使用规则,将52万条数据全量初始化同步到Redis,结果如下:

3次运行的中间值为4.6秒

4、测试用例二

使用Lua脚本,将52万条数据全量初始化同步到Redis,结果如下:

3次运行的中间值为9.5秒

5、测试用例三

使用规则,将binlog中52万条增量数据同步到Redis。结果如下:每秒增量同步(TPS)32950条

6、测试用例四

使用Lua脚本,将binlog中52万条增量数据同步到Redis。结果如下:

每秒增量同步(TPS)15819条

7、测试用例五

100个线程不停向MySQL写数据,使用规则将数据实时增量同步到Redis,TPS保持在4000以上,资源占用情况如下:

100个线程不停向MySQL写数据,使用Lua脚本将数据实时增量同步到Redis,TPS保持在2000以上,资源占用情况如下:

以上测试结果,会随着测试环境的不同而改变,仅作为参考。

文章不错?点个【在看】吧! ????

这篇关于后起之秀 | MySQL Binlog增量同步工具go-mysql-transfer实现详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755328

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一