大数据-SparkStreaming(五)

2024-02-28 07:59
文章标签 数据 sparkstreaming

本文主要是介绍大数据-SparkStreaming(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                       大数据-SparkStreaming(五)

SparkStreaming和SparkSQL整合

pom.xml里面添加

<dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.11</artifactId><version>2.3.3</version>
</dependency>

代码开发

package com.kaikeba.streamingimport org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}/*** sparkStreaming整合sparksql*/
object SocketWordCountForeachRDDDataFrame {def main(args: Array[String]): Unit = {Logger.getLogger("org").setLevel(Level.ERROR)// todo: 1、创建SparkConf对象val sparkConf: SparkConf = new SparkConf().setAppName("NetworkWordCountForeachRDDDataFrame").setMaster("local[2]")// todo: 2、创建StreamingContext对象val ssc = new StreamingContext(sparkConf,Seconds(2))//todo: 3、接受socket数据val socketTextStream: ReceiverInputDStream[String] = ssc.socketTextStream("node01",9999)//todo: 4、对数据进行处理val words: DStream[String] = socketTextStream.flatMap(_.split(" "))//todo: 5、对DStream进行处理,将RDD转换成DataFramewords.foreachRDD(rdd=>{//获取得到sparkSessin,由于将RDD转换成DataFrame需要用到SparkSession对象val sparkSession: SparkSession = SparkSession.builder().config(rdd.sparkContext.getConf).getOrCreate()import sparkSession.implicits._val dataFrame: DataFrame = rdd.toDF("word")//将dataFrame注册成表dataFrame.createOrReplaceTempView("words")//统计每个单词出现的次数val result: DataFrame = sparkSession.sql("select word,count(*) as count from words group by word")//展示结果result.show()})//todo: 6、开启流式计算ssc.start()ssc.awaitTermination()}
}

SparkStreaming容错

  • SparkStreaming运行流程回顾

  • Executor失败

 Tasks和Receiver自动的重启,不需要做任何的配置。

  • Driver失败

用checkpoint机制恢复失败的Driver

定期的将Driver信息写入到HDFS中。

 

步骤一:设置自动重启Driver程序

Standalone:

在spark-submit中增加以下两个参数:
--deploy-mode cluster
--supervise #失败后是否重启Driver 

使用示例:

spark-submit \
--master spark://node01:7077 \
--deploy-mode cluster \
--supervise \
--class com.kaikeba.streaming.Demo \
--executor-memory 1g \
--total-executor-cores 2 \
original-sparkStreamingStudy-1.0-SNAPSHOT.jar 

Yarn:

在spark-submit中增加以下参数:

--deploy-mode cluster

在yarn配置中设置yarn.resourcemanager.am.max-attemps参数 ,默认为2,例如:

<property><name>yarn.resourcemanager.am.max-attempts</name><value>4</value><description>The maximum number of application master execution attempts.</description>
</property>

使用示例:

spark-submit \
--master yarn \
--deploy-mode cluster \
--class com.kaikeba.streaming.Demo \
--executor-memory 1g \
--total-executor-cores 2 \
original-sparkStreamingStudy-1.0-SNAPSHOT.jar 

步骤二:设置HDFS的checkpoint目录

streamingContext.setCheckpoint(hdfsDirectory) 

步骤三:代码实现

// Function to create and setup a new StreamingContext
def functionToCreateContext(): StreamingContext = {val ssc = new StreamingContext(...)   // new contextval lines = ssc.socketTextStream(...) // create DStreams...ssc.checkpoint(checkpointDirectory)   // set checkpoint directoryssc
}// Get StreamingContext from checkpoint data or create a new one
val context = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext _)// Do additional setup on context that needs to be done,
// irrespective of whether it is being started or restarted
context. ...// Start the context
context.start()
context.awaitTermination()

 

这篇关于大数据-SparkStreaming(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754878

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram