【电路笔记】-诺顿定理(Norton‘s Theorem)

2024-02-28 05:50

本文主要是介绍【电路笔记】-诺顿定理(Norton‘s Theorem),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

诺顿定理(Norton’s Theorem)

文章目录

  • 诺顿定理(Norton's Theorem)
    • 1、概述与定义
    • 2、诺顿模型确定
    • 3、一些线性电路的诺顿模型
      • 3.1 单电压源
      • 3.2 单电流源
      • 3.3 多电流/电压源
    • 5、总结

本文是我们上一篇有关戴维南定理的文章的延续。 在上一篇文章中,我们已经看到任何线性电路都可以简化为由理想电压源与电阻串联组成的基本电路。

另一个非常相似的模型被称为诺顿定理,它是由美国工程师爱德华·诺顿于 1926 年建立的,距离戴维南定理第一个版本已经过去了 70 多年。

诺顿定理确认任何线性电路都等效于与等效电阻并联的理想电流源。

首先,我们回顾一下这句话的粗体术语,以便理解该定理适用的适当框架。 在第二部分中,我们提出了一种逐步确定诺顿等效电路模型的方法。 第三节将提出不同的实际例子来说明该方法。

最后,在结束本教程之前,我们将在诺顿模型和戴维宁模型之间建立联系。

1、概述与定义

线性电路 (LEC) 是诺顿定理的框架,它们代表了一种特殊类型的电路,其中唯一的组件是理想源和电阻器。

理想电压(或电流)源提供恒定的电压(或电流)值,而与电路中流动的电流(或电压)无关。 它们的表示和行为如下图1 所示:

在这里插入图片描述

图1:理想源的表示和特征

等效电阻器 R e q R_{eq} Req表示一组互连电阻器的关联。 将电阻器关联在一起的规则如下图 2 所示:
在这里插入图片描述

图2:串联和并联电阻器组合

现在框架和定义已经清楚了,我们用下面的图3来说明诺顿定理:
在这里插入图片描述

图3:诺顿定理变换图解

在线性电路上使用诺顿定理可得到一个称为诺顿模型的简单电路,该电路由与电阻并联的理想电流源组成。 等效电流源和电阻器用下标 N N N 标记,作为定理名称的参考。

下一节抽象地介绍了确定任何线性电路的 Norton 模型时应遵循的分步方法。

2、诺顿模型确定

诺顿电流 I N I_N IN代表当负载被导线替代时线性电路端点上的电流,也称为短路电流。

事实上,诺顿电阻 R N R_N RN 等于戴维宁电阻 R T h R_{Th} RTh,它们都代表当所有线性电路源都停用时线性电路端点处的电阻:电压源被缩短,电流源被打开。

我们建议遵循以下步骤来确定任何线性电路的诺顿模型:

  • 1)用导线替换线性电路端点上的负载
  • 2)计算短路电路的电流
  • 3)更换所有短路的电压源和开路的电流源
  • 4)计算等效电阻
  • 5)重新连接负载并借助 I N I_N IN R N R_N RN 的知识绘制 Norton 模型

下一节重点介绍将此方法应用于实际电路,从最基本的设计到更复杂的架构。

3、一些线性电路的诺顿模型

3.1 单电压源

考虑图 4 中所示的以下电路:

在这里插入图片描述

图4:单电压源线性电路

为了确定该电路的诺顿模型,我们去掉负载 Z Z Z并缩短电路的端点:
在这里插入图片描述

现在我们可以确定诺顿电流 I N I_N IN,基尔霍夫电流定律规定 I 1 = I 2 + I N I_1=I_2+I_N I1=I2+IN。 由于IN不跨越任何阻抗,这意味着电阻 R 2 R_2 R2被缩短,因此我们可以肯定 I 2 = 0 I_2=0 I2=0

因此,诺顿电流等于电压源提供的电流,可以通过应用基尔霍夫电压定律计算: V s = R 1 I 1 + R 2 I 2 = R 1 I 1 ⇒ I N = V s / R 1 = 10 m A V_s=R_{1}I_{1}+R_{2}I_{2}=R_{1}I_{1} ⇒ I_N=V_s/R_1=10mA Vs

这篇关于【电路笔记】-诺顿定理(Norton‘s Theorem)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754545

相关文章

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个