Human3.6M 数据集介绍及下载

2024-02-28 05:50
文章标签 数据 介绍 下载 human3.6

本文主要是介绍Human3.6M 数据集介绍及下载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 引言
    • 下载
    • 概述
      • 数据规模和多样性
      • 准确捕捉和同步
    • 演示
    • 角色
    • 场景
    • 数据
      • 实验环境
      • 图像数据
      • 姿势数据
    • 注意
    • 参考


引言

Human3.6M 是一个用于 3D 人体位姿估计研究的大型公开数据集,在 paperswithcode 中可以看到在此数据集上提出的各种 SOTA 算法及模型,是目前基于多视图的 3D 人体位姿研究最为重要的一个数据集,没有之一。

在这里插入图片描述

下载

在官网下载的话需要使用教育邮箱注册账号并等待审核,审核速度非常慢。这里推荐直接使用如下方式下载:

# Download H36M annotations
mkdir data
cd data
wget http://visiondata.cis.upenn.edu/volumetric/h36m/h36m_annot.tar
tar -xf h36m_annot.tar
rm h36m_annot.tar# Download H36M images
mkdir -p h36m/images
cd h36m/images
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S1.tar
tar -xf S1.tar
rm S1.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S5.tar
tar -xf S5.tar
rm S5.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S6.tar
tar -xf S6.tar
rm S6.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S7.tar
tar -xf S7.tar
rm S7.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S8.tar
tar -xf S8.tar
rm S8.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S9.tar
tar -xf S9.tar
rm S9.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S11.tar
tar -xf S11.tar
rm S11.tar
cd ../../..

当然,wget 是单线程下载,可以考虑使用 NDM 多线程下载来提高速度。此外,该数据集文件是放在国外的服务器上,因此有条件的可以开个网络代理。

概述

数据规模和多样性

  • 360 万张 3D 人体姿势和对应图像
  • 11 名专业演员(6 男 5 女)
  • 7 个场景(讨论、吸烟、拍照以及打电话等等)

准确捕捉和同步

  • 来自 4 个标定的高分辨率 50HZ 相机拍摄的视频
  • 来自高速运动捕捉系统的精准 3D 关节位置和角度
  • 单次配置 24 个身体部位标签
  • Time-of-flight 范围数据
  • 对每个演员进行 3D 激光扫描
  • 精准的背景去除和人体边界框

演示

Video for Human3.6M Dataset

角色

这些动作是由 11 名专业的演员(6 男 5 女)来完成的,它们的 BMI 指数范围是 17~29,这保证了适度的身体形状可变性以及不同的活动范围。受试者穿着的是自己的日常服装,而不是特殊的动作捕捉服,以尽可能保持真实感。其中,对 7 名受试者(4 男 3 女)采集的数据进行训练和验证,4 名受试者(2 男 2 女)采集的数据进行测试。

场景

该数据集由 4 台数码相机收集的 360 万个不同的人体姿势组成。数据被组织成 15 个训练动作,其中包含多种不对成的行走姿势(例如手插口袋走路,肩扛包走路)、坐姿、躺姿、各种等待姿势以及其他类型的姿势。演员们被赋予了带有示例的详细任务,以帮助它们在重复之间规划一组稳定的姿势,以创建训练、验证和测试集。然后,在执行这些任务时,演员们也有相当多的自由,可以自由地超越对任务严格的解释。

DirectionsDiscussionEatingActivities while seatedGreeting
DirectionsDiscussionEatingActivities while seatedGreeting
Taking photoPosingMaking purchasesSmokingWaiting
Taking photoPosingMaking purchasesSmokingWaiting
WalkingSitting on chairTalking on the phoneWalking dogWalking together
WalkingSitting on chairTalking on the phoneWalking dogWalking together

数据

实验环境

在这里插入图片描述

实验室设置如上图。使用 15 个传感器(4 个数码相机、1 个 time-of-flight 传感器,10 个动捕相机)来捕获数据。拍摄区域约为 6mx5m,其中有效拍摄空间是 4mx3m,所有的相机都能完全看到拍摄对象。4 台数码相机(DV)放置在拍摄空间的角落。time-of-flight(TOF) 传感器放置在其中一个数码相机的旁边。墙壁上安装了一组 10 个动作捕捉(MX)相机,以最大限度地提高有效实验体积,左右两侧各 4 个,底部水平边缘大约中间位置有 2 个。

图像数据

使用 4 台 basler 高分辨率逐行扫描相机来采集 50HZ 的视频数据。他们与动作捕捉系统处于相同的时钟和出发状态,从而确保视频和姿势数据之间的完美同步。系统的默认校准程序执行起来非常简单,但相机模型不包含径向和切向畸变参数。由于我们力求获得高质量的姿势信息,因此使用了一个更复杂、稳健的程序。整个数据集的视频帧总数超过 360 万。

姿势数据

姿势数据是相对于骨架给出的。处于一致性和方便考虑,对所有参数化使用相同的 32 个关节骨架。在测试中,我们减少了相关关节的数量,例如每只手和每只脚只留下一个关节。

注意

使用该数据集请在参考文献出引用如下两篇文献:

@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu,  Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}
}
@inproceedings{IonescuSminchisescu11,
author = {Catalin Ionescu, Fuxin Li, Cristian Sminchisescu},
title = {Latent Structured Models for Human Pose Estimation},
booktitle = {International Conference on Computer Vision},
year = {2011}
}

参考

  • 3D人体姿态估计-Human3.6m相关
  • Human3.6M 数据集的下载与 Human3.6M pkl 文件缺失的处理方法

这篇关于Human3.6M 数据集介绍及下载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754543

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核