Human3.6M 数据集介绍及下载

2024-02-28 05:50
文章标签 数据 介绍 下载 human3.6

本文主要是介绍Human3.6M 数据集介绍及下载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

文章目录

    • 引言
    • 下载
    • 概述
      • 数据规模和多样性
      • 准确捕捉和同步
    • 演示
    • 角色
    • 场景
    • 数据
      • 实验环境
      • 图像数据
      • 姿势数据
    • 注意
    • 参考


引言

Human3.6M 是一个用于 3D 人体位姿估计研究的大型公开数据集,在 paperswithcode 中可以看到在此数据集上提出的各种 SOTA 算法及模型,是目前基于多视图的 3D 人体位姿研究最为重要的一个数据集,没有之一。

在这里插入图片描述

下载

在官网下载的话需要使用教育邮箱注册账号并等待审核,审核速度非常慢。这里推荐直接使用如下方式下载:

# Download H36M annotations
mkdir data
cd data
wget http://visiondata.cis.upenn.edu/volumetric/h36m/h36m_annot.tar
tar -xf h36m_annot.tar
rm h36m_annot.tar# Download H36M images
mkdir -p h36m/images
cd h36m/images
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S1.tar
tar -xf S1.tar
rm S1.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S5.tar
tar -xf S5.tar
rm S5.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S6.tar
tar -xf S6.tar
rm S6.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S7.tar
tar -xf S7.tar
rm S7.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S8.tar
tar -xf S8.tar
rm S8.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S9.tar
tar -xf S9.tar
rm S9.tar
wget http://visiondata.cis.upenn.edu/volumetric/h36m/S11.tar
tar -xf S11.tar
rm S11.tar
cd ../../..

当然,wget 是单线程下载,可以考虑使用 NDM 多线程下载来提高速度。此外,该数据集文件是放在国外的服务器上,因此有条件的可以开个网络代理。

概述

数据规模和多样性

  • 360 万张 3D 人体姿势和对应图像
  • 11 名专业演员(6 男 5 女)
  • 7 个场景(讨论、吸烟、拍照以及打电话等等)

准确捕捉和同步

  • 来自 4 个标定的高分辨率 50HZ 相机拍摄的视频
  • 来自高速运动捕捉系统的精准 3D 关节位置和角度
  • 单次配置 24 个身体部位标签
  • Time-of-flight 范围数据
  • 对每个演员进行 3D 激光扫描
  • 精准的背景去除和人体边界框

演示

Video for Human3.6M Dataset

角色

这些动作是由 11 名专业的演员(6 男 5 女)来完成的,它们的 BMI 指数范围是 17~29,这保证了适度的身体形状可变性以及不同的活动范围。受试者穿着的是自己的日常服装,而不是特殊的动作捕捉服,以尽可能保持真实感。其中,对 7 名受试者(4 男 3 女)采集的数据进行训练和验证,4 名受试者(2 男 2 女)采集的数据进行测试。

场景

该数据集由 4 台数码相机收集的 360 万个不同的人体姿势组成。数据被组织成 15 个训练动作,其中包含多种不对成的行走姿势(例如手插口袋走路,肩扛包走路)、坐姿、躺姿、各种等待姿势以及其他类型的姿势。演员们被赋予了带有示例的详细任务,以帮助它们在重复之间规划一组稳定的姿势,以创建训练、验证和测试集。然后,在执行这些任务时,演员们也有相当多的自由,可以自由地超越对任务严格的解释。

DirectionsDiscussionEatingActivities while seatedGreeting
DirectionsDiscussionEatingActivities while seatedGreeting
Taking photoPosingMaking purchasesSmokingWaiting
Taking photoPosingMaking purchasesSmokingWaiting
WalkingSitting on chairTalking on the phoneWalking dogWalking together
WalkingSitting on chairTalking on the phoneWalking dogWalking together

数据

实验环境

在这里插入图片描述

实验室设置如上图。使用 15 个传感器(4 个数码相机、1 个 time-of-flight 传感器,10 个动捕相机)来捕获数据。拍摄区域约为 6mx5m,其中有效拍摄空间是 4mx3m,所有的相机都能完全看到拍摄对象。4 台数码相机(DV)放置在拍摄空间的角落。time-of-flight(TOF) 传感器放置在其中一个数码相机的旁边。墙壁上安装了一组 10 个动作捕捉(MX)相机,以最大限度地提高有效实验体积,左右两侧各 4 个,底部水平边缘大约中间位置有 2 个。

图像数据

使用 4 台 basler 高分辨率逐行扫描相机来采集 50HZ 的视频数据。他们与动作捕捉系统处于相同的时钟和出发状态,从而确保视频和姿势数据之间的完美同步。系统的默认校准程序执行起来非常简单,但相机模型不包含径向和切向畸变参数。由于我们力求获得高质量的姿势信息,因此使用了一个更复杂、稳健的程序。整个数据集的视频帧总数超过 360 万。

姿势数据

姿势数据是相对于骨架给出的。处于一致性和方便考虑,对所有参数化使用相同的 32 个关节骨架。在测试中,我们减少了相关关节的数量,例如每只手和每只脚只留下一个关节。

注意

使用该数据集请在参考文献出引用如下两篇文献:

@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu,  Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}
}
@inproceedings{IonescuSminchisescu11,
author = {Catalin Ionescu, Fuxin Li, Cristian Sminchisescu},
title = {Latent Structured Models for Human Pose Estimation},
booktitle = {International Conference on Computer Vision},
year = {2011}
}

参考

  • 3D人体姿态估计-Human3.6m相关
  • Human3.6M 数据集的下载与 Human3.6M pkl 文件缺失的处理方法

这篇关于Human3.6M 数据集介绍及下载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754543

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

SpringBoot返回文件让前端下载的几种方式

《SpringBoot返回文件让前端下载的几种方式》文章介绍了开发中文件下载的两种常见解决方案,并详细描述了通过后端进行下载的原理和步骤,包括一次性读取到内存和分块写入响应输出流两种方法,此外,还提供... 目录01 背景02 一次性读取到内存,通过响应输出流输出到前端02 将文件流通过循环写入到响应输出流

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p