VASP笔记之:计算德拜温度,杨氏模量,弹性矩阵

2024-02-27 16:08

本文主要是介绍VASP笔记之:计算德拜温度,杨氏模量,弹性矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

VASP笔记之:计算德拜温度,杨氏模量,弹性矩阵

最近需要计算杨氏模量,但是上面三个量都是一起算出来的,so,一起记录一下笔记。

使用版本为VASP5.4.4,为了方便计算使用的是vaspkit1.2.1软件辅助自动生成的脚本进行的计算,微信公众号:学术之友,原文链接为:这里

下面我们以金刚石结构为例讲解如何采用应力-应变函数关系计算弹性常数,详见VASPKIT/examples/elastic/diamond_3D。由于金刚石具有立方晶体结构,一共有3个独立弹性常数C11、C12和C44 (不明白的请看原胞转化方法以及标准原胞在计算中的重要性)。

  1. 准备优化好的POSCAR文件,注意通常采用具有标准基矢形式的原胞计算弹性常数(VASPKIT-603/604可以生成标准结构),至于原因请看原胞转化方法以及标准原胞在计算中的重要性。

  2. 运行VASPKIT-102生成KPOINTS (注意精度要稍高一些)

3. 运行VASPKIT-101-DC生成INCAR文件,并根据实际情况修改,以下仅供参考:
Global Parameters
ISTART =  0            (Read existing wavefunction; if there)
LREAL  =  F          (Projection operators: automatic)
PREC   =  High     (Precision level)
LWAVE  = F        (Write WAVECAR or not)
LCHARG = F        (Write CHGCAR or not)
ADDGRID= .TRUE.        (Increase grid; helps GGA convergence)Electronic Relaxation
ISMEAR =  0           (Gaussian smearing; metals:1)
SIGMA  =  0.05         (Smearing value in eV; metals:0.2)
NELM   =  40           (Max electronic SCF steps)
NELMIN =  4            (Min electronic SCF steps)
EDIFF  =  1E-08        (SCF energy convergence; in eV)# GGA  =  PS           (PBEsol exchange-correlation)Ionic Relaxation
NELMIN =  6            (Min electronic SCF steps)
NSW    =  100          (Max electronic SCF steps)
IBRION =  2            (Algorithm: 0-MD; 1-Quasi-New; 2-CG)
ISIF   =  2            (Stress/relaxation: 2-Ions, 3-Shape/Ions/V, 4-Shape/Ions)EDIFFG = -1E-02      (Ionic convergence; eV/AA)
  1. 准备VPKIT.in文件并设置第一行为1 (预处理),运行VASPKIT并选择200, 将生成用于计算弹性常数的文件
1                                                              ! 1 for prep-rocessing, 2 for post-processing
3D                                                             ! 2D for slab, 3D for bulk
7                                                              ! number of strain
-0.015 -0.010 -0.005 0.000 0.005 0.010 0.015                   ! magnitude of strain

运行VASPKIT会在屏幕输出以下信息:

-->> (01) Reading VPKIT.in File...+-------------------------- Warm Tips --------------------------+See some examples in vaspkit/examples/elastic,Require the fully-relaxed and standard Conventional cell.The stress-strain method requires higher ENCUT and denser K-Mesh+---------------------------------------------------------------+-->> (02) Reading Structural Parameters from POSCAR File...-> C11_C12_C44 folder created successfully!-> strain_-0.015 folder created successfully!-> strain_-0.010 folder created successfully!-> strain_-0.005 folder created successfully!-> strain_0.000 folder created successfully!-> strain_+0.005 folder created successfully!-> strain_+0.010 folder created successfully!-> strain_+0.015 folder created successfully!
  1. 批量提交vasp作业,相应的脚本如下(根据实际情况修改)
#!/bin/bash
root_path=`pwd`
for cij in `ls -F | grep /$`
do
cd ${root_path}/$cij
for s in strain_*
do
cd ${root_path}/$cij/$s
echo `pwd`cp ../../vasp.job ../vasp.job# Add here your vasp_submit_job_script
done
done
  1. 等VASP全部计算完成之后,再次修改VPKIT.in文件中第一行为2 (后处理),然后再次运行VASPKIT并选择200,得到以下结果;
-->> (01) Reading VPKIT.in File...
+-------------------------- Warm Tips --------------------------+
See some examples in vaspkit/examples/elastic,
Require the fully-relaxed and standard Conventional cell.
The stress-strain method requires higher ENCUT and denser K-Mesh
+---------------------------------------------------------------+
-->> (02) Reading Structural Parameters from POSCAR File...
-->> (03) Calculating fitting coefficients of stress vs strain.
+-------------------------- Summary ----------------------------+
Based on the Strain versus Energy method.
Crystal Class: m-3m
Space Group: Fd-3m
Crystal System: Cubic system
Including Point group classes: 23, 2/m-3, 432, -43m, 4/m-32/m
There are 3 independent elastic constants
C11  C12  C12    0    0    0
C12  C11  C12    0    0    0
C12  C12  C11    0    0    0
0    0    0  C44    0    0
0    0    0    0  C44    0
0    0    0    0    0  C44Stiffness Tensor C_ij (in GPa):
1050.316    126.488    126.488      0.000      0.000      0.000
126.488   1050.316    126.488      0.000      0.000      0.000
126.488    126.488   1050.316      0.000      0.000      0.000
0.000      0.000      0.000    559.816      0.000      0.000
0.000      0.000      0.000      0.000    559.816      0.000
0.000      0.000      0.000      0.000      0.000    559.816Compliance Tensor S_ij (in GPa^{-1}):
0.000977  -0.000105  -0.000105   0.000000   0.000000   0.000000
-0.000105   0.000977  -0.000105   0.000000   0.000000   0.000000
-0.000105  -0.000105   0.000977   0.000000   0.000000   0.000000
0.000000   0.000000   0.000000   0.001786   0.000000   0.000000
0.000000   0.000000   0.000000   0.000000   0.001786   0.000000
0.000000   0.000000   0.000000   0.000000   0.000000   0.001786Elastic stability criteria as seen in PRB 90, 224104 (2014).
Criteria (i) C11 - C12 > 0 meeted.
Criteria (ii) C11 + 2C12 > 0 meeted.
Criteria (iii) C44 > 0 meeted.
This Structure is Mechanically Stable.Average mechanical properties for polycrystalline:
+---------------------------------------------------------------+
|        Scheme             |   Voigt   |   Reuss   |    Hill   |
+---------------------------------------------------------------+
|  Bulk modulus K (GPa)     |  434.431  |  434.431  |  434.431  |
|  Shear modulus G (GPa)    |  520.655  |  516.065  |  518.360  |
|  Young's modulus E (GPa)  | 1116.095  | 1109.045  | 1112.574  |
|  P-wave modulus (GPa)     | 1128.638  | 1122.517  | 1125.577  |
|  Poisson's ratio v        |    0.072  |    0.075  |    0.073  |
|  Bulk/Shear ratio         |    0.834  |    0.842  |    0.838  |
+---------------------------------------------------------------+
Pugh Ratio: 1.193
Cauchy Pressure (GPa): -433.328
Universal Elastic Anisotropy: 0.044
Chung-Buessem Anisotropy:    0.004
Isotropic Poisson's Ratio: 0.073
Longitudinal wave velocity (in m/s):  17942.831
Transverse wave velocity (in m/s):  12176.403
Average wave velocity (in m/s):  13279.977
Debye temperature (in K): 2212.733
References:
[1] Voigt W, Lehrbuch der Kristallphysik (1928)
[2] Reuss A, Z. Angew. Math. Mech. 9 49-58 (1929)
[3] Hill R, Proc. Phys. Soc. A 65 349-54 (1952)
[4] Debye temperature J. Phys. Chem. Solids 24, 909-917 (1963)
[5] Elastic wave velocities calculated using Navier's equation+---------------------------------------------------------------+

以下是利用VASPKIT结合VASP计算得到的结果与实验结果的对比,通过比较发现采用VASPKIT结合VASP得到的理论计算弹性常数与实验值符合较好。

最后如果大家在研究中使用了VASPKIT请帮忙引用,格式如下:


V. WANG, N. XU, J.C. LIU, G. TANG, W.T. Geng, VASPKIT: A User-Friendly
Interface Facilitating High-Throughput Computing and Analysis Using
VASP Code, arXiv:1908.08269 (2019)。


这篇关于VASP笔记之:计算德拜温度,杨氏模量,弹性矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752948

相关文章

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn