python multiprocessing进程超时处理与进度条显示的平衡

本文主要是介绍python multiprocessing进程超时处理与进度条显示的平衡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近写python项目,遇到几个多进程的问题

多进程情况下,如何显示总任务的运行进度

用的比较多的是tqdm库,使用非常方便,在有迭代的地方加上tqdm即可。

比如使用Pool.imap()执行任务时

from multiprocessing import Pool
with Pool(4) as p:res = list(tqdm(p.imap(function_name, params), total=len(params)))
p.close()
p.join()

或者通过for循环执行任务时

from multiprocessing import Pool
pool = Pool(processes=4)
for i  in tqdm(range(500)):pool.apply(test, args=(i,))   
pool.close()
pool.join()

我的项目中需要对大量的url进行请求和处理,所以经常会出现某个进程的请求长时间没有响应而被挂起的情况,导致tqdm经常会卡在99%或100%处无法结束。tqdm本身似乎也没有超时机制,所以在利用多进程处理爬虫这类需要进程等待结果的任务时,必须要添加子进程的超时机制。

多进程的超时处理

我研究了一下进程池超时处理的几个办法。比较主流的有以下几种:

  1. get获取多进程的返回值,获取超时则抛出异常
  2. 在需要执行的任务函数中添加计时器和时间,超时抛出异常
  3. 为每个任务进程添加守护进程,由守护进程计算执行的时间,如果超时则守护进程杀死任务进程

多进程超时与总进度条的显示

将多进程超时处理与进度条处理结合了一下

  • 方法一
    使用map_async处理任务,通过get超时判断进程超时。这个方法实现比较简单,但是运行起来非常的慢。
pool = Pool(processes=4)
for l in tqdm(links,total=1000): # total为links的总数r = pool.map_async(self.check,(l,))try:print(r.get(timeout=3)) # 设置子进程的响应超时为3sexcept multiprocessing.context.TimeoutError:pass
  • 方法二
    使用imap_unordered()执行任务,进程执行的结果会在进程执行完后就立刻返回,不像map()需要等待所有任务执行完一次性返回结果。这里可以通过next迭代获取该函数所有进程的下的返回值,当获取超时,则抛出超时异常。但是测试发现,如果进程返回超时,.next会重复获取超时进程的返回结果,重复抛出超时异常,而不是在抛出超时异常后执行下一个任务,也相当于是挂起状态了,并没有解决进程超时的问题。看了一下imap_unordered()的源代码,发现next的逻辑是在没有获取到数据之前,会一直重复请求直到取到数据为止。不知道是不是还有别的隐藏技能,总觉得这个逻辑设计的怪怪的。暂时也不知道怎么让.next只获取一次,获取失败就跳到下一个index,所以这个方案只能作罢。
with multiprocessing.Pool() as pool:it = pool.imap_unordered(self.check, links) #check为任务函数pbar = tqdm(total=len(links)) #提前设置任务总量while True:try:tmp = it.next(timeout=2)pbar.update()except multiprocessing.TimeoutError:print("link timeout: {}".format(tmp))continueexcept StopIteration:# signal that the iterator is exhausted# 如果所有的进程数据都获取完了,next会抛出该异常停止获取pbar.close()break
  • 方法二改进版
    方案二中,.next一直会卡在超时的index上不继续迭代,所以不会有StopIteration异常使while循环停止,陷入死循环。所以想到一个比较简单粗暴的办法,将.next获取返回值的次数(即循环次数)限制为数组长度,避免陷入死循环。
    按照该办法可以正常进行超时处理了,但是测试发现这个办法存在一个bug:如果循环中有一个进程没有响应,则该进程后的所有进程返回值都无法获取到,全部被该进程的超时取代。因为.next函数会坚持不懈地去请求获取这个超时进程的数据,导致其他进程的数据没办法获取。emmm…这个办法也只能作罢。

  • 方法三
    这个是看stackoverflow的大佬们提出的一个方案。建立一个守护进程池。由守护进程新建一个执行任务的进程,并监控执行进程的返回值,如果返回超时,则杀掉执行进程。这个是一圈下来的最佳方案,但是该方案与tqdm冲突,如果使用了tqdm,那么进程函数就不会执行(还没找到原因,哪位大佬知道的可以指点一下),所以需要自己另外写进度显示

# 执行函数
def check(self, url):headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:73.0) Gecko/20100101 Firefox/73.0","Connection": "close"}try:res = requests.head(url, headers=headers)return url, res.status_codeexcept Exception as e:print(e)# 守护进程
def abortable_check(self, func, *args, **kwargs):timeout = kwargs.get('timeout', None)p = ThreadPool(1)res = p.apply_async(func, args=args)try:out = res.get(timeout)  # Wait timeout seconds for func to complete.# print(out)return outexcept multiprocessing.TimeoutError:print("{} timeout".format(args[0]))return (args[0], 444)# 回调函数
def collectMyResult(self, result):if result is not None and result[1] == 404:self.brokenlinks.append(result[0])if result is not None and result[1] == 444:self.timeout.append(result[0])self.count += 1 #全局变量统计任务执行进度print('\r进度:{}/{}'.format(self.count,self.linkslen), end ='')def main():pool = multiprocessing.Pool(maxtasksperchild=10)for l in links:a = [l]abortable_func = partial(self.abortable_check, self.check, timeout=5)pool.apply_async(abortable_func, args=a, callback=self.collectMyResult)

这篇关于python multiprocessing进程超时处理与进度条显示的平衡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752891

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小