python multiprocessing进程超时处理与进度条显示的平衡

本文主要是介绍python multiprocessing进程超时处理与进度条显示的平衡,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近写python项目,遇到几个多进程的问题

多进程情况下,如何显示总任务的运行进度

用的比较多的是tqdm库,使用非常方便,在有迭代的地方加上tqdm即可。

比如使用Pool.imap()执行任务时

from multiprocessing import Pool
with Pool(4) as p:res = list(tqdm(p.imap(function_name, params), total=len(params)))
p.close()
p.join()

或者通过for循环执行任务时

from multiprocessing import Pool
pool = Pool(processes=4)
for i  in tqdm(range(500)):pool.apply(test, args=(i,))   
pool.close()
pool.join()

我的项目中需要对大量的url进行请求和处理,所以经常会出现某个进程的请求长时间没有响应而被挂起的情况,导致tqdm经常会卡在99%或100%处无法结束。tqdm本身似乎也没有超时机制,所以在利用多进程处理爬虫这类需要进程等待结果的任务时,必须要添加子进程的超时机制。

多进程的超时处理

我研究了一下进程池超时处理的几个办法。比较主流的有以下几种:

  1. get获取多进程的返回值,获取超时则抛出异常
  2. 在需要执行的任务函数中添加计时器和时间,超时抛出异常
  3. 为每个任务进程添加守护进程,由守护进程计算执行的时间,如果超时则守护进程杀死任务进程

多进程超时与总进度条的显示

将多进程超时处理与进度条处理结合了一下

  • 方法一
    使用map_async处理任务,通过get超时判断进程超时。这个方法实现比较简单,但是运行起来非常的慢。
pool = Pool(processes=4)
for l in tqdm(links,total=1000): # total为links的总数r = pool.map_async(self.check,(l,))try:print(r.get(timeout=3)) # 设置子进程的响应超时为3sexcept multiprocessing.context.TimeoutError:pass
  • 方法二
    使用imap_unordered()执行任务,进程执行的结果会在进程执行完后就立刻返回,不像map()需要等待所有任务执行完一次性返回结果。这里可以通过next迭代获取该函数所有进程的下的返回值,当获取超时,则抛出超时异常。但是测试发现,如果进程返回超时,.next会重复获取超时进程的返回结果,重复抛出超时异常,而不是在抛出超时异常后执行下一个任务,也相当于是挂起状态了,并没有解决进程超时的问题。看了一下imap_unordered()的源代码,发现next的逻辑是在没有获取到数据之前,会一直重复请求直到取到数据为止。不知道是不是还有别的隐藏技能,总觉得这个逻辑设计的怪怪的。暂时也不知道怎么让.next只获取一次,获取失败就跳到下一个index,所以这个方案只能作罢。
with multiprocessing.Pool() as pool:it = pool.imap_unordered(self.check, links) #check为任务函数pbar = tqdm(total=len(links)) #提前设置任务总量while True:try:tmp = it.next(timeout=2)pbar.update()except multiprocessing.TimeoutError:print("link timeout: {}".format(tmp))continueexcept StopIteration:# signal that the iterator is exhausted# 如果所有的进程数据都获取完了,next会抛出该异常停止获取pbar.close()break
  • 方法二改进版
    方案二中,.next一直会卡在超时的index上不继续迭代,所以不会有StopIteration异常使while循环停止,陷入死循环。所以想到一个比较简单粗暴的办法,将.next获取返回值的次数(即循环次数)限制为数组长度,避免陷入死循环。
    按照该办法可以正常进行超时处理了,但是测试发现这个办法存在一个bug:如果循环中有一个进程没有响应,则该进程后的所有进程返回值都无法获取到,全部被该进程的超时取代。因为.next函数会坚持不懈地去请求获取这个超时进程的数据,导致其他进程的数据没办法获取。emmm…这个办法也只能作罢。

  • 方法三
    这个是看stackoverflow的大佬们提出的一个方案。建立一个守护进程池。由守护进程新建一个执行任务的进程,并监控执行进程的返回值,如果返回超时,则杀掉执行进程。这个是一圈下来的最佳方案,但是该方案与tqdm冲突,如果使用了tqdm,那么进程函数就不会执行(还没找到原因,哪位大佬知道的可以指点一下),所以需要自己另外写进度显示

# 执行函数
def check(self, url):headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:73.0) Gecko/20100101 Firefox/73.0","Connection": "close"}try:res = requests.head(url, headers=headers)return url, res.status_codeexcept Exception as e:print(e)# 守护进程
def abortable_check(self, func, *args, **kwargs):timeout = kwargs.get('timeout', None)p = ThreadPool(1)res = p.apply_async(func, args=args)try:out = res.get(timeout)  # Wait timeout seconds for func to complete.# print(out)return outexcept multiprocessing.TimeoutError:print("{} timeout".format(args[0]))return (args[0], 444)# 回调函数
def collectMyResult(self, result):if result is not None and result[1] == 404:self.brokenlinks.append(result[0])if result is not None and result[1] == 444:self.timeout.append(result[0])self.count += 1 #全局变量统计任务执行进度print('\r进度:{}/{}'.format(self.count,self.linkslen), end ='')def main():pool = multiprocessing.Pool(maxtasksperchild=10)for l in links:a = [l]abortable_func = partial(self.abortable_check, self.check, timeout=5)pool.apply_async(abortable_func, args=a, callback=self.collectMyResult)

这篇关于python multiprocessing进程超时处理与进度条显示的平衡的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752891

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调