2024-02-26(金融AI行业概览与大数据生态圈)

2024-02-27 12:20

本文主要是介绍2024-02-26(金融AI行业概览与大数据生态圈),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.最开始的风控是怎么做的?

人审

吃业务经验

不能大批量处理,效率低下

不适用于移动互联网的金融场景

2.建模的概念

建模就是构造一个数学公式,能将我们手上有的数据输入进去,通过计算得到一些预测结果。

比如初高中学习的线性回归,就是最简单的建模过程。

风控模型最原始的思路就是输入一个用户的信息,得到这个人是“会还钱”还是“不会还钱”。这是个二分类问题。

而评分卡模型其实就是希望能将一系列的个人信息输入模型,然后得到一个用户的还款概率。概率越大,评分越高,越容易还钱。概率越小,评分越低,越容易跑路。典型例子就是芝麻信用分。

3.为什么一定要映射成某种分数呢?

我们可以随时根据业务需求调整通过率。

更容易向用户解释他的信用评级。

更容易向领导解释一个用户被拒绝的原因。

更容易监控一个模型的效果。

4.风控的流程

风控的角度来看,一般可以分为以下几个部分:

数据采集、反欺诈、策略、模型、催收。

数据采集

数据采集会涉及到埋点和爬中技术,基本上业的数据都大同小异,免费的运营商数据、和安卓可爬的手机内部信息app名称,手机设备信息,部分app内容信息)、以及收费的征信数据、各种信息校验、外部黑名单之类的。还有一些特定场景的现金贷和消费金融会有自有的数据可供使用,比如阿里京东自己的电商数据、滴滴的司机数据、顺丰中通的快递数据等等。

反欺诈引擎

反欺诈引肇主要包括两个部分,反欺诈规则和反欺诈模型,这里其实很少使用传统监督模型。涉及到的算法以无监督算法、社交网络算法、深度学习居多。大部分的公司都使用的是反欺诈规则,这也是主要提倡的。一个原因是欺诈标签不好得到,很难做监督学习的训练。还有一个原因是传统的机器学习对欺诈的检测果很差。因为所谓欺诈,就是一些黑产或者个人将自己包装成信用良好的用户,进行借款后失联或者拒不还钱,既然都伪装成了好客户,基于风控人员主观思考建立的统计模型,又怎么可能有好的效果,但是经过一段时间的实验,这一块其实用深度学习反而有意想不到的效果,基本思想可以理解为,简单评分卡解释性强,带来的坏处就是可以被逆向破解,而复杂模型的黑箱操作虽然解释性差,却有一定的安全性,尤其是搭配了在线学习等动态手段之后。反向破解的成本极高。此外还有很多算法诸如异常检测和知识图谱都在这一块有所应用。

规则引擎

规则擎其实就是我们常说的策略,主要通过数据分析、挖掘手段以及一些监督、无监督算法,得到不同字段、各个区间的坏账率 (badrate) ,找到最佳分段区间,然后得到筛选后信用较好的一批特定人群进行放款。这一块主要有单变量分析和一些关键指标的计算和监控,比Rorate、PSI、KS、AUC,等等。通常规则和模型是组合使用的,尤其在反欺诈场景中。

风控模型

风控模型是机器学习在风控领域的主要体现。当然前面提到的反欺诈模型也是重点之一,主要是通过监督算法构建违约概率预测模型。但是因为实际业务中,是数据的质量并不是永远那么完美,这里通常我们会使用到深度学习、无监督、弱监督等等方法去辅助 传统监督学习算法。
风控模型其中包含了A/B/C卡,模型算法之间可以没有显著区别,而是根据其发生的时间点不同而进行划分的(货前/贷中/贷后),也就是y产生的方式不一样。通常信贷领域都是用逾期天数来定义。A卡可以用客户历史逾期天数最大的天数。B卡则可以多期借款中逾期最大的一次。C卡因为用途不同有不同的建立方法。比如你们公司有内催,有外催。外催肯定是回款率低,单价贵的。那么就可以根据是否被内催催回来定义y。

催收

催收是风控的最终手段,这个环节可以产生很多对模型有帮助的数据。比如懂收记录的文字描述、触达率、欺诈标签等等。并且坏账的客户会被列入黑名单。其实只要是能被惟回来的,都不是坏账,但是很多公司为了保险起见,逾期超过一定时间的客户,即使被懂回来,也会被拉入黑名单。这里主要的算法就是催收模型相关的,可能是监督、无监督算法。也有基于社交网络算法构造的失联模型等等。

这篇关于2024-02-26(金融AI行业概览与大数据生态圈)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752368

相关文章

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑