Landsat8 TIRS载荷与MODIS1B热红外波段数据的简单对比

2024-02-27 09:04

本文主要是介绍Landsat8 TIRS载荷与MODIS1B热红外波段数据的简单对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        现有的地表温度反演算法大致有以下四种:大气校正法、单通道算法、分裂窗算法和多波段算法。大气校正法和单通道算法需要大气实时剖面数据,单通道算法适用于只有一个热红外波段的数据,如Landsat TM /ETM数据;分裂窗算法适合于两个热红外波段的数据, 如 MOAA- AVHRR和MODIS;多波段波段算法适合于多个热红外波段的数据,所需参数多,运算复杂且需要白天晚上两景数据,反演难度较大,就成熟程度而言,多波段算法还在发展之中。到目前为止,分裂窗算法是目前发展比较成熟的地表温度遥感反演方法。这一算法需要两个彼此相邻的热红外波段遥感数据来进行地表温度的反演。分裂窗算法主要是针对MOAA- AVHRRR的热红外通道4和5的数据来推导。Landsat 8数据的两个热红外波段与MODIS 热红外波段的31,32波段以及AVHRR的4和5波段范围最为接近,是否能用分裂窗算法实现Landsat8 TIRS载荷?

        LandSat-8上携带的TIRS载荷,将是有史以来最先进,性能最好的TIRS。TIRS将收集地球两个热区地带的热量流失,目标是了解所观测地带水分消耗,特别是美国西部干旱地区。

表2:TIRS载荷参数

Band #

中心波长(μm)

最小波段边界 (μm)

最大波段边界(μm)

空间分辨率 (m)

10

10.9

10.6

11.2

100

11

12.0

11.5

12.5

100


MODIS拥有36个波段,其中31和32波段为热红外波段,如下表所示。

表3:MODIS1B数据参数

波段号

主要应用

分辨率

波段宽度

频谱强度

要求的信噪比

1

植被叶绿素吸收

250

0.620-0.670

21.8

128

2

云和植被覆盖变换

250

0.841-0.876

24.7

201

3

土壤植被差异

500

0.459-0.479

35.3

243

4

绿色植被

500

0.545-0.565

29.0

228

5

叶面/树冠差异

500

1.230-0-1.250

5.4

74

6

雪/云差异

500

1.628-1.652

7.3

275

7

陆地和云的性质

500

2.105-2.155

1.0

110

8

叶绿素

1000

0.405-0.420

44.9

880

9

叶绿素

1000

0.438-0.448

41.9

838

10

叶绿素

1000

0.483-0.493

32.1

802

11

叶绿素

1000

0.526-0.536

27.9

754

12

沉淀物

1000

0.546-0.556

21.0

750

13

沉淀物,大气层

1000

0.662-0.672

9.5

910

14

叶绿素荧光

1000

0.673-0.683

8.7

1087

15

气溶胶性质

1000

0.743-0.753

10.2

586

16

气溶胶/大气层性质

1000

0.862-0.877

6.2

516

17

云/大气层性质

1000

0.890-0.920

10.0

167

18

云/大气层性质

1000

0.931-0.941

3.6

57

19

云/大气层性质

1000

0.915-0.965

15.0

250

20

洋面温度

1000

3.660-3.840

0.45

0.05

21

森林火灾/火山

1000

3.929-3.989

2.38

2.00

22

云/地表温度

1000

3.929-3.989

0.67

0.07

23

云/地表温度

1000

4.020-4.080

0.79

0.07

24

对流层温度/云片

1000

4.433-4.498

0.17

0.25

25

对流层温度/云片

1000

4.482-4.549

0.59

0.25

26

红外云探测

1000

1.360-1.390

6.00

150

27

对流层中层湿度

1000

6.535-6.895

1.16

0.25

28

对流层中层湿度

1000

7.175-7.475

2.18

0.25

29

表面温度

1000

8.400-8.700

9.58

0.05

30

臭氧总量

1000

9.580-9.880

3.69

0.25

31

云/表面温度

1000

10.780-11.280

9.55

0.05

32

云高和表面温度

1000

11.770-12.270

8.94

0.05

33

云高和云片

1000

13.185-13.485

4.52

0.25

34

云高和云片

1000

13.485-13.785

3.76

0.25

35

云高和云片

1000

13.785-14.085

3.11

0.25

36

云高和云片

1000

18.085-14.385

2.08

0.35

        Landsat 8的热红外波段的波宽以及波长中心与MODIS 1B的31与32波段的波宽以及波长中心基本一致,具体的对比细节如下:

表 3 Landsat 8与MODIS1B热红外波段数据对比

数据类型

热红外波段

中心波长

波宽

分辨率

Landsat 8

10

10.9

10.60-11.20

100

11

12

11.50-12.50

100

MODIS 1B

31

11.03

10.780-11.280

1000

32

12.02

11.770-12.270

1000

从数据参数来看,是可以使用分裂窗算法实现Landsat8 TIRS载荷的温度反演。但是具体还需要检验。

这篇关于Landsat8 TIRS载荷与MODIS1B热红外波段数据的简单对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751892

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺