Landsat8 TIRS载荷与MODIS1B热红外波段数据的简单对比

2024-02-27 09:04

本文主要是介绍Landsat8 TIRS载荷与MODIS1B热红外波段数据的简单对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        现有的地表温度反演算法大致有以下四种:大气校正法、单通道算法、分裂窗算法和多波段算法。大气校正法和单通道算法需要大气实时剖面数据,单通道算法适用于只有一个热红外波段的数据,如Landsat TM /ETM数据;分裂窗算法适合于两个热红外波段的数据, 如 MOAA- AVHRR和MODIS;多波段波段算法适合于多个热红外波段的数据,所需参数多,运算复杂且需要白天晚上两景数据,反演难度较大,就成熟程度而言,多波段算法还在发展之中。到目前为止,分裂窗算法是目前发展比较成熟的地表温度遥感反演方法。这一算法需要两个彼此相邻的热红外波段遥感数据来进行地表温度的反演。分裂窗算法主要是针对MOAA- AVHRRR的热红外通道4和5的数据来推导。Landsat 8数据的两个热红外波段与MODIS 热红外波段的31,32波段以及AVHRR的4和5波段范围最为接近,是否能用分裂窗算法实现Landsat8 TIRS载荷?

        LandSat-8上携带的TIRS载荷,将是有史以来最先进,性能最好的TIRS。TIRS将收集地球两个热区地带的热量流失,目标是了解所观测地带水分消耗,特别是美国西部干旱地区。

表2:TIRS载荷参数

Band #

中心波长(μm)

最小波段边界 (μm)

最大波段边界(μm)

空间分辨率 (m)

10

10.9

10.6

11.2

100

11

12.0

11.5

12.5

100


MODIS拥有36个波段,其中31和32波段为热红外波段,如下表所示。

表3:MODIS1B数据参数

波段号

主要应用

分辨率

波段宽度

频谱强度

要求的信噪比

1

植被叶绿素吸收

250

0.620-0.670

21.8

128

2

云和植被覆盖变换

250

0.841-0.876

24.7

201

3

土壤植被差异

500

0.459-0.479

35.3

243

4

绿色植被

500

0.545-0.565

29.0

228

5

叶面/树冠差异

500

1.230-0-1.250

5.4

74

6

雪/云差异

500

1.628-1.652

7.3

275

7

陆地和云的性质

500

2.105-2.155

1.0

110

8

叶绿素

1000

0.405-0.420

44.9

880

9

叶绿素

1000

0.438-0.448

41.9

838

10

叶绿素

1000

0.483-0.493

32.1

802

11

叶绿素

1000

0.526-0.536

27.9

754

12

沉淀物

1000

0.546-0.556

21.0

750

13

沉淀物,大气层

1000

0.662-0.672

9.5

910

14

叶绿素荧光

1000

0.673-0.683

8.7

1087

15

气溶胶性质

1000

0.743-0.753

10.2

586

16

气溶胶/大气层性质

1000

0.862-0.877

6.2

516

17

云/大气层性质

1000

0.890-0.920

10.0

167

18

云/大气层性质

1000

0.931-0.941

3.6

57

19

云/大气层性质

1000

0.915-0.965

15.0

250

20

洋面温度

1000

3.660-3.840

0.45

0.05

21

森林火灾/火山

1000

3.929-3.989

2.38

2.00

22

云/地表温度

1000

3.929-3.989

0.67

0.07

23

云/地表温度

1000

4.020-4.080

0.79

0.07

24

对流层温度/云片

1000

4.433-4.498

0.17

0.25

25

对流层温度/云片

1000

4.482-4.549

0.59

0.25

26

红外云探测

1000

1.360-1.390

6.00

150

27

对流层中层湿度

1000

6.535-6.895

1.16

0.25

28

对流层中层湿度

1000

7.175-7.475

2.18

0.25

29

表面温度

1000

8.400-8.700

9.58

0.05

30

臭氧总量

1000

9.580-9.880

3.69

0.25

31

云/表面温度

1000

10.780-11.280

9.55

0.05

32

云高和表面温度

1000

11.770-12.270

8.94

0.05

33

云高和云片

1000

13.185-13.485

4.52

0.25

34

云高和云片

1000

13.485-13.785

3.76

0.25

35

云高和云片

1000

13.785-14.085

3.11

0.25

36

云高和云片

1000

18.085-14.385

2.08

0.35

        Landsat 8的热红外波段的波宽以及波长中心与MODIS 1B的31与32波段的波宽以及波长中心基本一致,具体的对比细节如下:

表 3 Landsat 8与MODIS1B热红外波段数据对比

数据类型

热红外波段

中心波长

波宽

分辨率

Landsat 8

10

10.9

10.60-11.20

100

11

12

11.50-12.50

100

MODIS 1B

31

11.03

10.780-11.280

1000

32

12.02

11.770-12.270

1000

从数据参数来看,是可以使用分裂窗算法实现Landsat8 TIRS载荷的温度反演。但是具体还需要检验。

这篇关于Landsat8 TIRS载荷与MODIS1B热红外波段数据的简单对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751892

相关文章

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Java实现本地缓存的四种方法实现与对比

《Java实现本地缓存的四种方法实现与对比》本地缓存的优点就是速度非常快,没有网络消耗,本地缓存比如caffine,guavacache这些都是比较常用的,下面我们来看看这四种缓存的具体实现吧... 目录1、HashMap2、Guava Cache3、Caffeine4、Encache本地缓存比如 caff