“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取

本文主要是介绍“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取

    • 1. 背景介绍
      • 1.1 场景痛点
      • 1.2 方案选型
    • 2. 准备开发环境
    • 3. PaddleSpeech 语音识别快速使用
    • 4. PaddleNLP 信息抽取快速使用
    • 5. 语音工单信息抽取核心功能实现
    • 6. 语音工单信息抽取网页应用
      • 6.1 网页前端
      • 6.2 网页后端
      • 6.3 aistudio服务演示
      • 6.4 启动服务
      • 6.5 构造Post请求测试
    • 服务

本文将介绍如何利用 PaddleSpeech 的语音识别技术与 PaddleNLP 的通用信息抽取技术,实现基于智能语音指令解析的关键工单信息提取。我们将通过语音交互的方式,在交通报销场景下实现智能信息抽取,以提高工作效率与质量。

1. 背景介绍

智能语音指令解析集成了语音识别(ASR)与信息抽取(IE)等技术,广泛应用于智能语音填单、语音交互、手机APP语音唤醒等场景,提高人机交互效率。其中,智能语音填单可通过口述记录信息,并利用算法解析口述内容中的关键信息,完成自动信息录入。

1.1 场景痛点

  • 电话分析:边询问边记录,容易遗漏关键信息,例如社区疫情防控信息记录。
  • 工单生成:特定场景下无法完成文字录入,如电力路线巡检工作人员在高空巡检高压电线路。
  • 信息登记:重复性工作效率低易出错,例如汽车售后客服话务员每天接听大量电话。

针对以上场景,利用PaddleSpeech的语音识别技术和PaddleNLP的信息抽取技术,可以自动识别和抽取语音中的关键信息,帮助简化记录流程,提高工作效率和质量。

1.2 方案选型

  • PaddleSpeech语音识别模型:包含多种领先国际水平的语音算法与预训练模型,提供简单易用的语音识别功能。
  • PaddleNLP通用信息抽取模型(UIE):支持实体识别、关系和事件抽取、情感分析等多种信息抽取任务,具有良好的泛化效果。

2. 准备开发环境

安装PaddleSpeech与PaddleNLP:

!pip install paddlespeech
!pip install paddlenlp

下载必要数据包与示例音频,并进行初始化设置。

3. PaddleSpeech 语音识别快速使用

通过PaddleSpeech调用语音识别方法简单易行:

from paddlespeech.cli.asr.infer import ASRExecutor
asr = ASRExecutor()
result = asr(audio_file="ie.wav", force_yes=True)
print(result)

4. PaddleNLP 信息抽取快速使用

利用PaddleNLP提供的信息抽取能力,直接调用Taskflow API进行预测:

from paddlenlp import Taskflowschema = ["时间", "出发地", "目的地", "费用"]
ie = Taskflow("information_extraction", schema=schema, task_path="/home/aistudio/work")ie_result = ie(result)
print(ie_result)

5. 语音工单信息抽取核心功能实现

将语音识别与信息抽取功能进行串联,实现语音工单信息抽取的核心功能模块:

def audio_ie(audio_path):asr_result = asr(audio_file=audio_path, force_yes=True)ie_result = ie(asr_result)return ie_resultaudio_ie("ie.wav")

6. 语音工单信息抽取网页应用

构建网页应用,通过前后端交互实现语音工单信息抽取的服务。

6.1 网页前端

利用Vue框架,结合js-audio-recorder库实现网页前端的录音功能。

6.2 网页后端

利用FastAPI框架搭建后端服务,核心功能为语音信息抽取函数。

6.3 aistudio服务演示

在aistudio中,通过FastAPI搭建网页应用,模拟网页调用语音工单信息提取的后端服务。
在这里插入图片描述

6.4 启动服务

启动FastAPI服务,提供后端服务支持。

6.5 构造Post请求测试

通过requests库构造Post请求,模拟调用语音工单信息提取的后端服务。

通过以上步骤,你可以快速上手使用PaddleSpeech与PaddleNLP实现语音工单信息提取的应用,提高工作效率与质量。

服务

🛠 博主提供一站式解决方案,让您的工作变得更加轻松、高效!以下是我们提供的服务:

  1. 代部署

    🚀 为您提供快速、稳定的部署方案。无论是您的应用程序、网站还是其他软件项目,我们都可以帮助您将其部署到适当的平台上。

  2. 课程设计选题

    📚 为您量身定制符合课程要求和学生需求的选题方案。无论是基础课程还是高级课程,我们都能够为您提供专业的建议和支持。

  3. 线上辅导

    💻 提供线上辅导服务,为您提供个性化的指导和支持,帮助您解决在学习、工作或研究中遇到的各种问题和困难。
    如有需求,请随时私信

这篇关于“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/751740

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

OWASP十大安全漏洞解析

OWASP(开放式Web应用程序安全项目)发布的“十大安全漏洞”列表是Web应用程序安全领域的权威指南,它总结了Web应用程序中最常见、最危险的安全隐患。以下是对OWASP十大安全漏洞的详细解析: 1. 注入漏洞(Injection) 描述:攻击者通过在应用程序的输入数据中插入恶意代码,从而控制应用程序的行为。常见的注入类型包括SQL注入、OS命令注入、LDAP注入等。 影响:可能导致数据泄

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动